IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v195y2025ics0960077925003388.html
   My bibliography  Save this article

Temperature effects on the neuronal dynamics and Hamilton energy

Author

Listed:
  • Xie, Ying
  • Ye, Zhiqiu
  • Wang, Xueqin
  • Jia, Ya
  • Hu, Xueyan
  • Li, Xuening

Abstract

Neurons require suitable temperature to function, and temperature is a key factor influencing neuronal responses and energy dynamics. However, it is still unclear how temperature intensity and duration impose effect on the neuronal dynamics. To fill this gap, a thermistor is introduced into a memristive FitzHugh-Nagumo neural circuit for temperature perception (T_mFHN). The results reveal that the temperature stimulation induce different energy coding mechanisms in neurons, and the bursting-type neuron maintains higher energy levels than chaotic-type neurons. Notably, the energy of bursting-type neurons is higher than the energy maintained by chaotic-type neurons. Under low-temperature-scale, energy remains stable regardless of the duration of the temperature stimulus, but it increases without temperature in chaotic-type neurons. Additionally, temperature fluctuations shorten the setup time for synchronization and energy balance in the coupled systems. Remarkably, a brief duration of temperature stimulation induces synchronization, which remains stable and robust even without temperature stimulation under certain conditions. These findings provide valuable insights into how temperature influences neuronal dynamics and energy properties, and it offers guidance for designing neural networks with optimized temperature intensities and durations.

Suggested Citation

  • Xie, Ying & Ye, Zhiqiu & Wang, Xueqin & Jia, Ya & Hu, Xueyan & Li, Xuening, 2025. "Temperature effects on the neuronal dynamics and Hamilton energy," Chaos, Solitons & Fractals, Elsevier, vol. 195(C).
  • Handle: RePEc:eee:chsofr:v:195:y:2025:i:c:s0960077925003388
    DOI: 10.1016/j.chaos.2025.116325
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077925003388
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2025.116325?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:195:y:2025:i:c:s0960077925003388. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.