IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v195y2025ics0960077925002966.html
   My bibliography  Save this article

Dynamical behaviors of a stochastic SIR epidemic model with reaction–diffusion and spatially heterogeneous transmission rate

Author

Listed:
  • Su, Tan
  • Kao, Yonggui
  • Jiang, Daqing

Abstract

Much effort has been paid to epidemic models built by ordinary differential equations (ODEs), partial differential equations (PDEs), or stochastic differential equations (SDEs) and received remarkable achievement. Different from these models, we establish and analyze a SIR epidemic model by using stochastic partial differential equations (SPDEs) in this paper, which incorporates the influence of inevitable population diffusion, spatial heterogeneity, and environmental perturbation. For this model, the existence and uniqueness of the global positive solution is first proved through an innovative variable transformation approach. Then, we establish the sufficient condition for the existence of the Infected class by constructing suitable Lyapunov functions. The exponential extinction of disease is also investigated. More importantly, the exact expression of the probability density function near the equilibrium is obtained by theoretical analysis and matrix calculation. Further, we perform several numerical simulations to illustrate theoretical results. Finally, the corresponding conclusions and prospects are discussed.

Suggested Citation

  • Su, Tan & Kao, Yonggui & Jiang, Daqing, 2025. "Dynamical behaviors of a stochastic SIR epidemic model with reaction–diffusion and spatially heterogeneous transmission rate," Chaos, Solitons & Fractals, Elsevier, vol. 195(C).
  • Handle: RePEc:eee:chsofr:v:195:y:2025:i:c:s0960077925002966
    DOI: 10.1016/j.chaos.2025.116283
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077925002966
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2025.116283?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:195:y:2025:i:c:s0960077925002966. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.