IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v190y2025ics0960077924012888.html
   My bibliography  Save this article

Effects of chemotaxis and time delay on the spatiotemporal patterns of a two-species reaction–diffusion system

Author

Listed:
  • Zuo, Wenjie
  • Song, Binbin
  • Chen, Yuming

Abstract

In this paper, we investigate the effects of chemotaxis and time delay on the spatiotemporal dynamics of a two-species reaction–diffusion system. We show that cheomotaxis and delay can induce the instability of the constant steady state and the existence of a stable spatially non-homogeneous steady state bifurcation, spatially homogeneous/non-homogeneous Hopf bifurcation , and double Hopf bifurcation. Particularly, for the case of no delay, we drive the formula for determining the direction and stability of the degenerate steady state bifurcation. Furthermore, we apply our theoretical results to a delayed predator–prey system with predator-taxis and a cooperative Lotka–Volterra system. For the predator–prey system, predator-taxis and delay jointly lead to spatially non-homogeneous periodic solutions due to spatially non-homogeneous Hopf bifurcation and double-Hopf bifurcation via the interaction between Hopf bifurcations. For the cooperative system, spatially non-homogeneous steady state solutions and non-homogeneous period solutions bifurcate from the constant equilibrium by Turing bifurcation induced by the chemotaxis term and Hopf bifurcation induced by the delay, though the equilibrium of the corresponding ODE is globally asymptotically stable.

Suggested Citation

  • Zuo, Wenjie & Song, Binbin & Chen, Yuming, 2025. "Effects of chemotaxis and time delay on the spatiotemporal patterns of a two-species reaction–diffusion system," Chaos, Solitons & Fractals, Elsevier, vol. 190(C).
  • Handle: RePEc:eee:chsofr:v:190:y:2025:i:c:s0960077924012888
    DOI: 10.1016/j.chaos.2024.115736
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924012888
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115736?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Caiyun, 2015. "Rich dynamics of a predator–prey model with spatial motion," Applied Mathematics and Computation, Elsevier, vol. 260(C), pages 1-9.
    2. Pati, N.C. & Ghosh, Bapan, 2022. "Delayed carrying capacity induced subcritical and supercritical Hopf bifurcations in a predator–prey system," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 195(C), pages 171-196.
    3. Daiyong Wu & Hai Zhang & Jinde Cao & Tasawar Hayat, 2013. "Stability and Bifurcation Analysis of a Nonlinear Discrete Logistic Model with Delay," Discrete Dynamics in Nature and Society, Hindawi, vol. 2013, pages 1-7, December.
    4. Tiwari, Vandana & Tripathi, Jai Prakash & Mishra, Swati & Upadhyay, Ranjit Kumar, 2020. "Modeling the fear effect and stability of non-equilibrium patterns in mutually interfering predator–prey systems," Applied Mathematics and Computation, Elsevier, vol. 371(C).
    5. Chen, Mengxin & Zheng, Qianqian, 2022. "Predator-taxis creates spatial pattern of a predator-prey model," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    6. Banda, Heather & Chapwanya, Michael & Dumani, Phindile, 2022. "Pattern formation in the Holling–Tanner predator–prey model with predator-taxis. A nonstandard finite difference approach," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 196(C), pages 336-353.
    7. Chen, Mengxin & Zheng, Qianqian, 2023. "Steady state bifurcation of a population model with chemotaxis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    8. Chen, Mengxin & Srivastava, Hari Mohan, 2023. "Stability of bifurcating solution of a predator–prey model," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    9. Chang, Lili & Sun, Gui-Quan & Wang, Zhen & Jin, Zhen, 2015. "Rich dynamics in a spatial predator–prey model with delay," Applied Mathematics and Computation, Elsevier, vol. 256(C), pages 540-550.
    10. Song, Binbin & Zuo, Wenjie, 2023. "Spatiotemporal dynamics of a three-component chemotaxis model for Alopecia Areata," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Mengxin & Srivastava, Hari Mohan, 2023. "Stability of bifurcating solution of a predator–prey model," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    2. Huang, Tousheng & Zhang, Huayong, 2016. "Bifurcation, chaos and pattern formation in a space- and time-discrete predator–prey system," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 92-107.
    3. Gökçe, Aytül, 2021. "A mathematical study for chaotic dynamics of dissolved oxygen- phytoplankton interactions under environmental driving factors and time lag," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    4. Wu, Zeyan & Li, Jianjuan & Liu, Shuying & Zhou, Liuting & Luo, Yang, 2019. "A spatial predator–prey system with non-renewable resources," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 381-391.
    5. Zhang, Huayong & Ma, Shengnan & Huang, Tousheng & Cong, Xuebing & Yang, Hongju & Zhang, Feifan, 2018. "A new finding on pattern self-organization along the route to chaos," Chaos, Solitons & Fractals, Elsevier, vol. 106(C), pages 118-130.
    6. Wang, Jinliang & Li, You & Zhong, Shihong & Hou, Xiaojie, 2019. "Analysis of bifurcation, chaos and pattern formation in a discrete time and space Gierer Meinhardt system," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 1-17.
    7. Chen, Mengxin, 2025. "Pattern dynamics of a Lotka-Volterra model with taxis mechanism," Applied Mathematics and Computation, Elsevier, vol. 484(C).
    8. Ma, Yuanyuan & Dong, Nan & Liu, Na & Xie, Leilei, 2022. "Spatiotemporal and bifurcation characteristics of a nonlinear prey-predator model," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    9. Chen, Mengxin & Zheng, Qianqian, 2023. "Steady state bifurcation of a population model with chemotaxis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    10. Sivalingam, S M & Kumar, Pushpendra & Trinh, Hieu & Govindaraj, V., 2024. "A novel L1-Predictor-Corrector method for the numerical solution of the generalized-Caputo type fractional differential equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 220(C), pages 462-480.
    11. Chang, Lili & Jin, Zhen, 2018. "Efficient numerical methods for spatially extended population and epidemic models with time delay," Applied Mathematics and Computation, Elsevier, vol. 316(C), pages 138-154.
    12. Huisen Zhang, 2024. "Dynamics Behavior of a Predator-Prey Diffusion Model Incorporating Hunting Cooperation and Predator-Taxis," Mathematics, MDPI, vol. 12(10), pages 1-12, May.
    13. Moussaoui, Ali, 2015. "A reaction-diffusion equations modelling the effect of fluctuating water levels on prey-predator interactions," Applied Mathematics and Computation, Elsevier, vol. 268(C), pages 1110-1121.
    14. Tripathi, Jai Prakash & Bugalia, Sarita & Burdak, Kavita & Abbas, Syed, 2021. "Dynamical analysis and effects of law enforcement in a social interaction model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 567(C).
    15. Bhunia, Bidhan & Ghorai, Santu & Kar, Tapan Kumar & Biswas, Samir & Bhutia, Lakpa Thendup & Debnath, Papiya, 2023. "A study of a spatiotemporal delayed predator–prey model with prey harvesting: Constant and periodic diffusion," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    16. Liu, Yifan & Cai, Jiazhi & Xu, Haowen & Shan, Minghe & Gao, Qingbin, 2023. "Stability and Hopf bifurcation of a love model with two delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 205(C), pages 558-580.
    17. Kim, Hyundong & Jyoti, & Kwak, Soobin & Ham, Seokjun & Kim, Junseok, 2024. "In silico investigation of the formation of multiple intense zebra stripes using extending domain," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 225(C), pages 648-658.
    18. Sahu, S.R. & Raw, S.N., 2023. "Appearance of chaos and bi-stability in a fear induced delayed predator–prey system: A mathematical modeling study," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    19. Bhutia, Lakpa Thendup & Biswas, Samir & Das, Esita & Kar, Tapan Kumar & Bhunia, Bidhan, 2025. "Evolution of Turing patterns of a predator–prey system with variable carrying capacity and harvesting," Chaos, Solitons & Fractals, Elsevier, vol. 191(C).
    20. Huang, Chengdai & Cao, Jinde & Xiao, Min & Alsaedi, Ahmed & Alsaadi, Fuad E., 2017. "Controlling bifurcation in a delayed fractional predator–prey system with incommensurate orders," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 293-310.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:190:y:2025:i:c:s0960077924012888. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.