Parameter estimation in the stochastic SIR model via scaled geometric Brownian motion
Author
Abstract
Suggested Citation
DOI: 10.1016/j.chaos.2024.115626
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Mikael Jagan & Michelle S deJonge & Olga Krylova & David J D Earn, 2020. "Fast estimation of time-varying infectious disease transmission rates," PLOS Computational Biology, Public Library of Science, vol. 16(9), pages 1-39, September.
- Gerrit Großmann & Michael Backenköhler & Verena Wolf, 2021. "Heterogeneity matters: Contact structure and individual variation shape epidemic dynamics," PLOS ONE, Public Library of Science, vol. 16(7), pages 1-19, July.
- Luís M A Bettencourt & Ruy M Ribeiro, 2008. "Real Time Bayesian Estimation of the Epidemic Potential of Emerging Infectious Diseases," PLOS ONE, Public Library of Science, vol. 3(5), pages 1-9, May.
- J. O. Lloyd-Smith & S. J. Schreiber & P. E. Kopp & W. M. Getz, 2005. "Superspreading and the effect of individual variation on disease emergence," Nature, Nature, vol. 438(7066), pages 355-359, November.
- Carol Y. Lin, 2008. "Modeling Infectious Diseases in Humans and Animals by KEELING, M. J. and ROHANI, P," Biometrics, The International Biometric Society, vol. 64(3), pages 993-993, September.
- Tornatore, Elisabetta & Maria Buccellato, Stefania & Vetro, Pasquale, 2005. "Stability of a stochastic SIR system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 354(C), pages 111-126.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wei Zhong, 2017. "Simulating influenza pandemic dynamics with public risk communication and individual responsive behavior," Computational and Mathematical Organization Theory, Springer, vol. 23(4), pages 475-495, December.
- Kris V. Parag & Robin N. Thompson & Christl A. Donnelly, 2022. "Are epidemic growth rates more informative than reproduction numbers?," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(S1), pages 5-15, November.
- Lingcai Kong & Jinfeng Wang & Weiguo Han & Zhidong Cao, 2016. "Modeling Heterogeneity in Direct Infectious Disease Transmission in a Compartmental Model," IJERPH, MDPI, vol. 13(3), pages 1-13, February.
- Audrey Duval & Quentin J Leclerc & Didier Guillemot & Laura Temime & Lulla Opatowski, 2024. "An algorithm to build synthetic temporal contact networks based on close-proximity interactions data," PLOS Computational Biology, Public Library of Science, vol. 20(6), pages 1-23, June.
- Mark D Jankowski & Christopher J Williams & Jeanne M Fair & Jennifer C Owen, 2013. "Birds Shed RNA-Viruses According to the Pareto Principle," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-9, August.
- Yeongseon Park & Michael A. Martin & Katia Koelle, 2023. "Epidemiological inference for emerging viruses using segregating sites," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
- Marcel Salathé & James H Jones, 2010. "Dynamics and Control of Diseases in Networks with Community Structure," PLOS Computational Biology, Public Library of Science, vol. 6(4), pages 1-11, April.
- Kernel Prieto, 2022. "Current forecast of COVID-19 in Mexico: A Bayesian and machine learning approaches," PLOS ONE, Public Library of Science, vol. 17(1), pages 1-21, January.
- Lambert, Sébastien & Gilot-Fromont, Emmanuelle & Toïgo, Carole & Marchand, Pascal & Petit, Elodie & Garin-Bastuji, Bruno & Gauthier, Dominique & Gaillard, Jean-Michel & Rossi, Sophie & Thébault, Anne, 2020. "An individual-based model to assess the spatial and individual heterogeneity of Brucella melitensis transmission in Alpine ibex," Ecological Modelling, Elsevier, vol. 425(C).
- Zin Thu Win & Mahmoud A. Eissa & Boping Tian, 2022. "Stochastic Epidemic Model for COVID-19 Transmission under Intervention Strategies in China," Mathematics, MDPI, vol. 10(17), pages 1-17, August.
- Xi Guo & Abhineet Gupta & Anand Sampat & Chengwei Zhai, 2022. "A stochastic contact network model for assessing outbreak risk of COVID-19 in workplaces," PLOS ONE, Public Library of Science, vol. 17(1), pages 1-23, January.
- Tyagi, Swati & Martha, Subash C. & Abbas, Syed & Debbouche, Amar, 2021. "Mathematical modeling and analysis for controlling the spread of infectious diseases," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
- Tardy, Olivia & Lenglos, Christophe & Lai, Sandra & Berteaux, Dominique & Leighton, Patrick A., 2023. "Rabies transmission in the Arctic: An agent-based model reveals the effects of broad-scale movement strategies on contact risk between Arctic foxes," Ecological Modelling, Elsevier, vol. 476(C).
- Kimberly M. Thompson, 2016. "Evolution and Use of Dynamic Transmission Models for Measles and Rubella Risk and Policy Analysis," Risk Analysis, John Wiley & Sons, vol. 36(7), pages 1383-1403, July.
- Li, Shuang & Xiong, Jie, 2024. "SIR epidemic model with non-Lipschitz stochastic perturbations," Statistics & Probability Letters, Elsevier, vol. 210(C).
- De Martino, Giuseppe & Spina, Serena, 2015. "Exploiting the time-dynamics of news diffusion on the Internet through a generalized Susceptible–Infected model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 634-644.
- repec:plo:pcbi00:1001058 is not listed on IDEAS
- Christoph Zimmer & Reza Yaesoubi & Ted Cohen, 2017. "A Likelihood Approach for Real-Time Calibration of Stochastic Compartmental Epidemic Models," PLOS Computational Biology, Public Library of Science, vol. 13(1), pages 1-21, January.
- John M Drake & Tobias S Brett & Shiyang Chen & Bogdan I Epureanu & Matthew J Ferrari & Éric Marty & Paige B Miller & Eamon B O’Dea & Suzanne M O’Regan & Andrew W Park & Pejman Rohani, 2019. "The statistics of epidemic transitions," PLOS Computational Biology, Public Library of Science, vol. 15(5), pages 1-14, May.
- Cheng, Yingying & Huo, Liang’an & Zhao, Laijun, 2020. "Rumor spreading in complex networks under stochastic node activity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 559(C).
- Christel Kamp & Mathieu Moslonka-Lefebvre & Samuel Alizon, 2013. "Epidemic Spread on Weighted Networks," PLOS Computational Biology, Public Library of Science, vol. 9(12), pages 1-10, December.
More about this item
Keywords
Stochastic; Epidemic models; Transmission rate; Volatility estimation; Seasonal forcing; Maximum likelihood;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:189:y:2024:i:p1:s0960077924011780. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.