IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v189y2024ip1s0960077924011627.html
   My bibliography  Save this article

A novel adaptive predefined-time sliding mode control scheme for synchronizing fractional order chaotic systems

Author

Listed:
  • Sun, Yunkang
  • Chen, Yuquan
  • Wang, Bing
  • Ma, Cheng

Abstract

In this paper, a novel adaptive predefined-time sliding model control scheme is presented for synchronizing fractional order chaotic systems subject to model uncertainties and external disturbances. A new sufficient criterion for predefined-time stability is proposed and proven to be valid by using the zero distribution property of sine functions. Based on the proposed criterion, a novel adaptive fractional order predefined-time sliding mode surface is designed and it is rigorously proven that the error states could converge to zero within a predefined time. Finally, a novel adaptive fractional order controller is proposed to ensure that the designed sliding mode surface can be reached within a predefined time. Numerous simulation results demonstrate that compared with the existing fixed-time control scheme, the proposed control scheme has the advantage of a simpler structure, fewer parameters and stronger robustness to the variation of initial values.

Suggested Citation

  • Sun, Yunkang & Chen, Yuquan & Wang, Bing & Ma, Cheng, 2024. "A novel adaptive predefined-time sliding mode control scheme for synchronizing fractional order chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 189(P1).
  • Handle: RePEc:eee:chsofr:v:189:y:2024:i:p1:s0960077924011627
    DOI: 10.1016/j.chaos.2024.115610
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924011627
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115610?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Runzi Luo & Haipeng Su, 2018. "The Robust Control and Synchronization of a Class of Fractional-Order Chaotic Systems with External Disturbances via a Single Output," Complexity, Hindawi, vol. 2018, pages 1-8, November.
    2. Shen, Zhiping & Li, Juntao, 2017. "Chaos control for a unified chaotic system using output feedback controllers," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 132(C), pages 208-219.
    3. Shirkavand, Mehrdad & Pourgholi, Mahdi & Yazdizadeh, Alireza, 2022. "Robust global fixed-time synchronization of different dimensions fractional-order chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    4. Luo, Runzi & Liu, Shuai & Song, Zijun & Zhang, Fang, 2023. "Fixed-time control of a class of fractional-order chaotic systems via backstepping method," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    5. Zhang, Mengjiao & Zang, Hongyan & Bai, Luyuan, 2022. "A new predefined-time sliding mode control scheme for synchronizing chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    6. Tavazoei, Mohammad Saleh & Haeri, Mohammad, 2008. "Synchronization of chaotic fractional-order systems via active sliding mode controller," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(1), pages 57-70.
    7. Dehui Liu & Tianzeng Li & Yu Wang, 2022. "Adaptive Dual Synchronization of Fractional-Order Chaotic System with Uncertain Parameters," Mathematics, MDPI, vol. 10(3), pages 1-16, January.
    8. Agrawal, S.K. & Srivastava, M. & Das, S., 2012. "Synchronization of fractional order chaotic systems using active control method," Chaos, Solitons & Fractals, Elsevier, vol. 45(6), pages 737-752.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Mengjiao & Zang, Hongyan & Liu, Zhongxin, 2025. "Fractional-order adaptive sliding mode control based on predefined-time stability for chaos synchronization," Chaos, Solitons & Fractals, Elsevier, vol. 191(C).
    2. Tiwari, Ankit & Singh, Piyush Pratap & Roy, Binoy Krishna, 2024. "A realizable chaotic system with interesting sets of equilibria, characteristics, and its underactuated predefined-time sliding mode control," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    3. Ma, Jiawei & Zhang, Huaguang & Zhang, Juan & Wang, Le, 2024. "Event-based predefined-time anti-synchronization for unified chaotic systems and the application to Chua’s circuit," Chaos, Solitons & Fractals, Elsevier, vol. 188(C).
    4. Gong, Xiao-Li & Liu, Xi-Hua & Xiong, Xiong, 2019. "Chaotic analysis and adaptive synchronization for a class of fractional order financial system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 522(C), pages 33-42.
    5. Khanzadeh, Alireza & Pourgholi, Mahdi, 2016. "Robust Synchronization of Fractional-Order Chaotic Systems at a Pre-Specified Time Using Sliding Mode Controller with Time-Varying Switching Surfaces," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 69-77.
    6. Balootaki, Mohammad Ahmadi & Rahmani, Hossein & Moeinkhah, Hossein & Mohammadzadeh, Ardashir, 2020. "On the Synchronization and Stabilization of fractional-order chaotic systems: Recent advances and future perspectives," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    7. Huang, Chengdai & Cao, Jinde, 2017. "Active control strategy for synchronization and anti-synchronization of a fractional chaotic financial system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 262-275.
    8. Bekiros, Stelios & Yao, Qijia & Mou, Jun & Alkhateeb, Abdulhameed F. & Jahanshahi, Hadi, 2023. "Adaptive fixed-time robust control for function projective synchronization of hyperchaotic economic systems with external perturbations," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    9. Shoreh, A.A.-H. & Kuznetsov, N.V. & Mokaev, T.N., 2022. "New adaptive synchronization algorithm for a general class of complex hyperchaotic systems with unknown parameters and its application to secure communication," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 586(C).
    10. Hajipour, Ahamad & Hajipour, Mojtaba & Baleanu, Dumitru, 2018. "On the adaptive sliding mode controller for a hyperchaotic fractional-order financial system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 497(C), pages 139-153.
    11. Runzi Luo & Jiaojiao Fu & Haipeng Su, 2019. "The Exponential Stabilization of a Class of n-D Chaotic Systems via the Exact Solution Method," Complexity, Hindawi, vol. 2019, pages 1-7, May.
    12. J. Humberto Pérez-Cruz & Pedro A. Tamayo-Meza & Maricela Figueroa & Ramón Silva-Ortigoza & Mario Ponce-Silva & R. Rivera-Blas & Mario Aldape-Pérez, 2019. "Exponential Synchronization of Chaotic Xian System Using Linear Feedback Control," Complexity, Hindawi, vol. 2019, pages 1-10, July.
    13. Wafaa S. Sayed & Moheb M. R. Henein & Salwa K. Abd-El-Hafiz & Ahmed G. Radwan, 2017. "Generalized Dynamic Switched Synchronization between Combinations of Fractional-Order Chaotic Systems," Complexity, Hindawi, vol. 2017, pages 1-17, February.
    14. Bo Wang & L. L. Chen, 2019. "New Results on the Control for a Kind of Uncertain Chaotic Systems Based on Fuzzy Logic," Complexity, Hindawi, vol. 2019, pages 1-8, March.
    15. Liang, Yuqin & Jia, Yunfeng, 2022. "Stability and Hopf bifurcation of a diffusive plankton model with time-delay and mixed nonlinear functional responses," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    16. Huan Ding & Jing Qian & Danning Tian & Yun Zeng, 2025. "Norm-Based Adaptive Control with a Novel Practical Predefined-Time Sliding Mode for Chaotic System Synchronization," Mathematics, MDPI, vol. 13(5), pages 1-19, February.
    17. Kocamaz, Uğur Erkin & Cevher, Barış & Uyaroğlu, Yılmaz, 2017. "Control and synchronization of chaos with sliding mode control based on cubic reaching rule," Chaos, Solitons & Fractals, Elsevier, vol. 105(C), pages 92-98.
    18. Chao Song & Shumin Fei & Jinde Cao & Chuangxia Huang, 2019. "Robust Synchronization of Fractional-Order Uncertain Chaotic Systems Based on Output Feedback Sliding Mode Control," Mathematics, MDPI, vol. 7(7), pages 1-10, July.
    19. Jia, Chao & Liu, Xiaohua, 2024. "Predefined time quasi-sliding mode control with fast convergence based on a switchable exponent for nonlinear systems," Chaos, Solitons & Fractals, Elsevier, vol. 187(C).
    20. Gao, Wei & Yan, Li & Saeedi, Mohammadhossein & Saberi Nik, Hassan, 2018. "Ultimate bound estimation set and chaos synchronization for a financial risk system," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 154(C), pages 19-33.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:189:y:2024:i:p1:s0960077924011627. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.