IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v185y2024ics0960077924006891.html
   My bibliography  Save this article

Prediction of spatiotemporal dynamic systems by data-driven reconstruction

Author

Listed:
  • Ren, Hu-Hu
  • Fan, Man-Hong
  • Bai, Yu-Long
  • Ma, Xiao-Ying
  • Zhao, Jun-Hao

Abstract

Prediction in nonlinear systems is critical and challenging in various fields. Data-driven methods provide the theoretical basis for predicting nonlinear systems. On this basis, a data-driven prediction framework for improved reservoir computing (RC) combined with higher order dynamic mode decomposition (HODMD) is proposed. First, HODMD extracts the eigenmodes of the nonlinear system through higher order Koopman assumptions and retains the principal modes to reconstruct the system. The subsequent process uses the reconstructed system to train a unique weight matrix through the quadratic readout of the reservoir feature vectors; the reusable feature of RC training is employed to accomplish autonomous prediction of the nonlinear system. The practical consideration of the data-driven prediction framework is to enhance the ability of the RC to learn the internal evolutionary laws of the nonlinear system. Numerical results by Kuramoto-Sivashinsky equation demonstrate that the HODMD-RC framework improves the short-term and long-term prediction of nonlinear systems.

Suggested Citation

  • Ren, Hu-Hu & Fan, Man-Hong & Bai, Yu-Long & Ma, Xiao-Ying & Zhao, Jun-Hao, 2024. "Prediction of spatiotemporal dynamic systems by data-driven reconstruction," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
  • Handle: RePEc:eee:chsofr:v:185:y:2024:i:c:s0960077924006891
    DOI: 10.1016/j.chaos.2024.115137
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924006891
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115137?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andre Esteva & Brett Kuprel & Roberto A. Novoa & Justin Ko & Susan M. Swetter & Helen M. Blau & Sebastian Thrun, 2017. "Correction: Corrigendum: Dermatologist-level classification of skin cancer with deep neural networks," Nature, Nature, vol. 546(7660), pages 686-686, June.
    2. Francesco Regazzoni & Stefano Pagani & Matteo Salvador & Luca Dede’ & Alfio Quarteroni, 2024. "Learning the intrinsic dynamics of spatio-temporal processes through Latent Dynamics Networks," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    3. Sangiorgio, Matteo & Dercole, Fabio & Guariso, Giorgio, 2021. "Forecasting of noisy chaotic systems with deep neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    4. Andre Esteva & Brett Kuprel & Roberto A. Novoa & Justin Ko & Susan M. Swetter & Helen M. Blau & Sebastian Thrun, 2017. "Dermatologist-level classification of skin cancer with deep neural networks," Nature, Nature, vol. 542(7639), pages 115-118, February.
    5. Daniel J. Gauthier & Erik Bollt & Aaron Griffith & Wendson A. S. Barbosa, 2021. "Next generation reservoir computing," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    6. Dai, Xuan & Xu, Da & Zhang, Mengqi & Stevens, Richard J.A.M., 2022. "A three-dimensional dynamic mode decomposition analysis of wind farm flow aerodynamics," Renewable Energy, Elsevier, vol. 191(C), pages 608-624.
    7. D. Eeltink & H. Branger & C. Luneau & Y. He & A. Chabchoub & J. Kasparian & T. S. Bremer & T. P. Sapsis, 2022. "Nonlinear wave evolution with data-driven breaking," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    8. Steven L. Brunton & Bingni W. Brunton & Joshua L. Proctor & Eurika Kaiser & J. Nathan Kutz, 2017. "Chaos as an intermittently forced linear system," Nature Communications, Nature, vol. 8(1), pages 1-9, December.
    9. Kevin Course & Prasanth B. Nair, 2023. "State estimation of a physical system with unknown governing equations," Nature, Nature, vol. 622(7982), pages 261-267, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Majd Oteibi & Adam Tamimi & Kaneez Abbas & Gabriel Tamimi & Danesh Khazaei & Hadi Khazaei, 2024. "Advancing Digital Health using AI and Machine Learning Solutions for Early Ultrasonic Detection of Breast Disorders in Women," International Journal of Research and Scientific Innovation, International Journal of Research and Scientific Innovation (IJRSI), vol. 11(11), pages 518-527, November.
    2. Lin Lu & Laurent Dercle & Binsheng Zhao & Lawrence H. Schwartz, 2021. "Deep learning for the prediction of early on-treatment response in metastatic colorectal cancer from serial medical imaging," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    3. Zheng Yan & Wenqian Robertson & Yaosheng Lou & Tom W. Robertson & Sung Yong Park, 2021. "Finding leading scholars in mobile phone behavior: a mixed-method analysis of an emerging interdisciplinary field," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(12), pages 9499-9517, December.
    4. Freddy Gabbay & Rotem Lev Aharoni & Ori Schweitzer, 2022. "Deep Neural Network Memory Performance and Throughput Modeling and Simulation Framework," Mathematics, MDPI, vol. 10(21), pages 1-20, November.
    5. Sonika Darshan, 2024. "Data Mining for Disease Diagnosis: A Review of Machine Learning Approaches in Healthcare," Journal of Artificial Intelligence General science (JAIGS) ISSN:3006-4023, Open Knowledge, vol. 6(1), pages 716-726.
    6. Lampartová, Alžběta & Lampart, Marek, 2024. "Exploring diverse trajectory patterns in nonlinear dynamic systems," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    7. Jungyoon Kim & Jihye Lim, 2021. "A Deep Neural Network-Based Method for Prediction of Dementia Using Big Data," IJERPH, MDPI, vol. 18(10), pages 1-13, May.
    8. Gang Yu & Kai Sun & Chao Xu & Xing-Hua Shi & Chong Wu & Ting Xie & Run-Qi Meng & Xiang-He Meng & Kuan-Song Wang & Hong-Mei Xiao & Hong-Wen Deng, 2021. "Accurate recognition of colorectal cancer with semi-supervised deep learning on pathological images," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    9. DonHee Lee & Seong No Yoon, 2021. "Application of Artificial Intelligence-Based Technologies in the Healthcare Industry: Opportunities and Challenges," IJERPH, MDPI, vol. 18(1), pages 1-18, January.
    10. Shang Li & Fei Yu & Shankou Zhang & Huige Yin & Hairong Lin, 2025. "Optimization of Direct Convolution Algorithms on ARM Processors for Deep Learning Inference," Mathematics, MDPI, vol. 13(5), pages 1-19, February.
    11. Claus Zippel & Sabine Bohnet-Joschko, 2021. "Rise of Clinical Studies in the Field of Machine Learning: A Review of Data Registered in ClinicalTrials.gov," IJERPH, MDPI, vol. 18(10), pages 1-14, May.
    12. Dario Sipari & Betsy D. M. Chaparro-Rico & Daniele Cafolla, 2022. "SANE (Easy Gait Analysis System): Towards an AI-Assisted Automatic Gait-Analysis," IJERPH, MDPI, vol. 19(16), pages 1-27, August.
    13. Darko B. Vuković & Senanu Dekpo-Adza & Stefana Matović, 2025. "AI integration in financial services: a systematic review of trends and regulatory challenges," Palgrave Communications, Palgrave Macmillan, vol. 12(1), pages 1-29, December.
    14. Jamil Ahmad & Abdul Khader Jilani Saudagar & Khalid Mahmood Malik & Waseem Ahmad & Muhammad Badruddin Khan & Mozaherul Hoque Abul Hasanat & Abdullah AlTameem & Mohammed AlKhathami & Muhammad Sajjad, 2022. "Disease Progression Detection via Deep Sequence Learning of Successive Radiographic Scans," IJERPH, MDPI, vol. 19(1), pages 1-16, January.
    15. Sarah Haggenmüller & Christoph Wies & Julia Abels & Jana T. Winterstein & Lukas Heinlein & Carina Nogueira Garcia & Jochen S. Utikal & Sebastian A. Wohlfeil & Friedegund Meier & Sarah Hobelsberger & F, 2025. "Discordance, accuracy and reproducibility study of pathologists’ diagnosis of melanoma and melanocytic tumors," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
    16. Rasheed Omobolaji Alabi & Alhadi Almangush & Mohammed Elmusrati & Ilmo Leivo & Antti Mäkitie, 2022. "Measuring the Usability and Quality of Explanations of a Machine Learning Web-Based Tool for Oral Tongue Cancer Prognostication," IJERPH, MDPI, vol. 19(14), pages 1-13, July.
    17. Walter Leal Filho & João Henrique Paulino Pires Eustachio & Andreea Corina Nita (Danila) & Maria Alzira Pimenta Dinis & Amanda Lange Salvia & Debby R. E. Cotton & Kamila Frizzo & Laís Viera Trevisan &, 2024. "Using data science for sustainable development in higher education," Sustainable Development, John Wiley & Sons, Ltd., vol. 32(1), pages 15-28, February.
    18. Arnesh Telukdarie & Logistic Makoni & R. Raghunatha Sarma & Megashnee Munsamy & Sunil Kumar, 2025. "System Models for Synchronous Strategies in Operational Healthcare Forecasting," IJERPH, MDPI, vol. 22(2), pages 1-28, February.
    19. Andreas Fügener & Jörn Grahl & Alok Gupta & Wolfgang Ketter, 2022. "Cognitive Challenges in Human–Artificial Intelligence Collaboration: Investigating the Path Toward Productive Delegation," Information Systems Research, INFORMS, vol. 33(2), pages 678-696, June.
    20. Vidhya V. & Anjan Gudigar & U. Raghavendra & Ajay Hegde & Girish R. Menon & Filippo Molinari & Edward J. Ciaccio & U. Rajendra Acharya, 2021. "Automated Detection and Screening of Traumatic Brain Injury (TBI) Using Computed Tomography Images: A Comprehensive Review and Future Perspectives," IJERPH, MDPI, vol. 18(12), pages 1-29, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:185:y:2024:i:c:s0960077924006891. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.