IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v177y2023ics0960077923011967.html
   My bibliography  Save this article

Cluster synchronization control for coupled genetic oscillator networks under denial-of-service attacks: Pinning partial impulsive strategy

Author

Listed:
  • Guo, Junfeng
  • Wang, Fei
  • Xue, Qianwen
  • Wang, Mengqing

Abstract

This paper focuses on the security cluster synchronization (CS) of coupled genetic oscillator networks (GONs) with parameters mismatch under denial-of-service (DoS) attacks. Firstly, a model of DoS attacks on the control channel of GONs is established. Then, in order to achieve secure CS of GONs under DoS attacks, a pinning partial impulsive control (PPIC) strategy is proposed for the first time. Compared with the existing pinning impulsive control and partial impulsive control, the PPIC control method only controls part of the molecules of part of the genetic oscillators, so it has better performance in saving control cost. Moreover, we design an algorithm to obtain sufficient conditions for secure CS and the DoS attacks duration ratio that the system can tolerate. In addition, when the system is immune to DoS attacks, it can still achieve CS under PPIC. Finally, two numerical examples based on MATLAB software are presented to demonstrate the effectiveness of the results. The secure synchronization region is obtained, and the convergence efficiency of error systems under PPIC and pinning impulsive control is compared in the simulation.

Suggested Citation

  • Guo, Junfeng & Wang, Fei & Xue, Qianwen & Wang, Mengqing, 2023. "Cluster synchronization control for coupled genetic oscillator networks under denial-of-service attacks: Pinning partial impulsive strategy," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
  • Handle: RePEc:eee:chsofr:v:177:y:2023:i:c:s0960077923011967
    DOI: 10.1016/j.chaos.2023.114294
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923011967
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.114294?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:177:y:2023:i:c:s0960077923011967. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.