IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v177y2023ics0960077923011360.html
   My bibliography  Save this article

Transformation of rotating dipole and vortex solitons in an anharmonic potential

Author

Listed:
  • Liu, Dongshuai
  • Gao, Yanxia
  • Fan, Dianyuan
  • Zhang, Lifu

Abstract

We investigate the basic properties of dipole and vortex solitons, both quiescent and rotating, supported by the axially symmetric anharmonic potential in a medium with cubic-quintic nonlinearity. The static solitons exhibit nonmonotonous behavior in terms of propagation constant as a function, and feature bistability regions. In the rotating frame, the dipole solitons transform into vortex solitons and the topological charge increases gradually with the growth of rotation frequency. Linear stability analysis and direct simulations reveal that rotating dipole solitons with higher charges are more stable than those with lower charges. Meanwhile, dipole solitons can rotate persistently during propagation and preserve their shape over multiple rotation periods. Our findings provide an alternative way for the transformation to achieve dipole and vortex solitons with higher topological charges.

Suggested Citation

  • Liu, Dongshuai & Gao, Yanxia & Fan, Dianyuan & Zhang, Lifu, 2023. "Transformation of rotating dipole and vortex solitons in an anharmonic potential," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
  • Handle: RePEc:eee:chsofr:v:177:y:2023:i:c:s0960077923011360
    DOI: 10.1016/j.chaos.2023.114234
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923011360
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.114234?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:177:y:2023:i:c:s0960077923011360. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.