IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v170y2023ics0960077923002291.html
   My bibliography  Save this article

Noise and generation effects in parallel Josephson junction chains

Author

Listed:
  • Matrozova, E.A.
  • Pankratov, A.L.

Abstract

We consider mutual effects of soliton dynamics and noise in a chain of Josephson junctions in the framework of the Frenkel-Kontorova model. The investigations are performed by the analysis of experimentally relevant quantities such as oscillation power and spectral linewidth, which both can be derived from the power spectral density of the system as, respectively, its integral and its width. Taking into account both ohmic and surface losses together with bias inhomogeneity, and considering dense soliton chain under the effect of external magnetic field, it is demonstrated that increase of the system discreteness (decrease of coupling between neighboring elements) leads to the oscillation power reduction and spectral linewidth increase, which signals about increase of the total noise in the system. Drastic increase of the linewidth is observed when the distance between elements becomes comparable with the soliton size, which is explained by an increase of stochasticity due to reflections of solitons from the system edges and noise.

Suggested Citation

  • Matrozova, E.A. & Pankratov, A.L., 2023. "Noise and generation effects in parallel Josephson junction chains," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
  • Handle: RePEc:eee:chsofr:v:170:y:2023:i:c:s0960077923002291
    DOI: 10.1016/j.chaos.2023.113328
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923002291
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.113328?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Spagnolo, B. & Valenti, D. & Guarcello, C. & Carollo, A. & Persano Adorno, D. & Spezia, S. & Pizzolato, N. & Di Paola, B., 2015. "Noise-induced effects in nonlinear relaxation of condensed matter systems," Chaos, Solitons & Fractals, Elsevier, vol. 81(PB), pages 412-424.
    2. G. Augello & D. Valenti & A. L. Pankratov & B. Spagnolo, 2009. "Lifetime of the superconductive state in short and long Josephson junctions," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 70(1), pages 145-151, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jin, Yanfei & Wang, Heqiang, 2020. "Noise-induced dynamics in a Josephson junction driven by trichotomous noises," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    2. Yablokov, A.A. & Glushkov, E.I. & Pankratov, A.L. & Gordeeva, A.V. & Kuzmin, L.S. & Il’ichev, E.V., 2021. "Resonant response drives sensitivity of Josephson escape detector," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    3. Ping, Zhu, 2023. "Analytical equivalent transformation method for nonlinear stochastic dynamics with multiple noises in high dimensions," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    4. Shi, Zhuozheng & Liao, Zhiqiang & Tabata, Hitoshi, 2022. "Boosting learning ability of overdamped bistable stochastic resonance system based physical reservoir computing model by time-delayed feedback," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    5. Piedjou Komnang, A.S. & Guarcello, C. & Barone, C. & Gatti, C. & Pagano, S. & Pierro, V. & Rettaroli, A. & Filatrella, G., 2021. "Analysis of Josephson junctions switching time distributions for the detection of single microwave photons," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    6. Jin, Yanfei & Wang, Haotian & Xu, Pengfei, 2023. "Noise-induced enhancement of stability and resonance in a tri-stable system with time-delayed feedback," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    7. Fang, Yuwen & Luo, Yuhui & Ma, Zhiqing & Zeng, Chunhua, 2021. "Transport and diffusion in the Schweitzer–Ebeling–Tilch model driven by cross-correlated noises," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 564(C).
    8. dos Santos, Maike A.F. & Junior, Luiz Menon, 2021. "Random diffusivity models for scaled Brownian motion," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    9. Li, Jun-Feng & Jahanshahi, Hadi & Kacar, Sezgin & Chu, Yu-Ming & Gómez-Aguilar, J.F. & Alotaibi, Naif D. & Alharbi, Khalid H., 2021. "On the variable-order fractional memristor oscillator: Data security applications and synchronization using a type-2 fuzzy disturbance observer-based robust control," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    10. Guarcello, C., 2021. "Lévy noise effects on Josephson junctions," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    11. Andreeva, N.V. & Turalchuk, P.A. & Chigirev, D.A. & Vendik, I.B. & Ryndin, E.A. & Luchinin, V.V., 2021. "Electron impact processes in voltage-controlled phase transition in vanadium dioxide thin films," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    12. Revin, L.S. & Pankratov, A.L., 2021. "Detection of bias inhomogeneity in Josephson junctions by switching current distributions," Chaos, Solitons & Fractals, Elsevier, vol. 149(C).
    13. Slepukhina, Evdokiia & Bashkirtseva, Irina & Ryashko, Lev & Kügler, Philipp, 2022. "Stochastic mixed-mode oscillations in the canards region of a cardiac action potential model," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    14. Chen, Ruyin & Xiong, Yue & Li, Zekun & He, Zhifen & Hou, Fang & Zhou, Jiawei, 2022. "Effects of correlated noises on binocular rivalry," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    15. Filip Simeski & Arnout M. P. Boelens & Matthias Ihme, 2020. "Modeling Adsorption in Silica Pores via Minkowski Functionals and Molecular Electrostatic Moments," Energies, MDPI, vol. 13(22), pages 1-17, November.
    16. Bashkirtseva, Irina A. & Ryashko, Lev B. & Pisarchik, Alexander N., 2020. "Ring of map-based neural oscillators: From order to chaos and back," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    17. Guarcello, C. & Bergeret, F.S., 2021. "Thermal noise effects on the magnetization switching of a ferromagnetic anomalous Josephson junction," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    18. Xu, Pengfei & Jin, Yanfei, 2020. "Coherence and stochastic resonance in a second-order asymmetric tri-stable system with memory effects," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    19. Zhevnenko, D. & Meshchaninov, F. & Kozhevnikov, V. & Shamin, E. & Belov, A. & Gerasimova, S. & Guseinov, D. & Mikhaylov, A. & Gornev, E., 2021. "Simulation of memristor switching time series in response to spike-like signal," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    20. Yablokov, A.A. & Mylnikov, V.M. & Pankratov, A.L. & Pankratova, E.V. & Gordeeva, A.V., 2020. "Suppression of switching errors in weakly damped Josephson junctions," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:170:y:2023:i:c:s0960077923002291. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.