IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v165y2022ip1s0960077922009742.html
   My bibliography  Save this article

Exploring the impact of flow values on multiscale complexity quantification of airport flight flow fluctuations

Author

Listed:
  • Liu, Hongzhi
  • Zhang, Xie
  • Hu, Huaqing
  • Zhang, Xingchen

Abstract

Being able to characterize the dynamic characteristics of the air traffic system and embody the dynamic evolution thereof, the complexity of air traffic flows has attracted the broad attention of scholars and researchers. To fully consider amplitude information, we adopt the improved multiscale weighted permutation entropy (IMWPE) and propose an improved multivariate multiscale weighted permutation entropy (IMMWPE) to explore the complexity of flight flows of the top ten busy airports in China from a univariate and a multivariate perspective, respectively. In addition, we propose an improved multiscale weight contingency to investigate the inhomogeneity between fluctuation pattern distributions in departure and arrival flight flows. At the advantages of the multiple coarse-graining procedures, we obtain more reliable and stable entropy and contingency results, considering amplitude information. Comparisons between the weighted and unweighted results show that the weighted methods are as capable as the unweighted in exactly characterizing the dynamic characteristics of flight flow fluctuations, i.e., temporal scale dependency, spike distributions, differences between univariate and multivariate perspectives. Results also show that the weight has a stronger impact on the complexity of univariate time series than the multivariate. From the univariate perspective, the complexity of departure and arrival flight flows of ZLXY and ZGGG is more sensitive to the amplitude information. From the multivariate perspective, ZUCK could be a typical representative of the complexity of the total flight flows of the ten airports.

Suggested Citation

  • Liu, Hongzhi & Zhang, Xie & Hu, Huaqing & Zhang, Xingchen, 2022. "Exploring the impact of flow values on multiscale complexity quantification of airport flight flow fluctuations," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
  • Handle: RePEc:eee:chsofr:v:165:y:2022:i:p1:s0960077922009742
    DOI: 10.1016/j.chaos.2022.112795
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922009742
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.112795?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiang, Xurui & Wen, Xiangxi & Wu, Minggong & Song, Min & Tu, Congliang, 2019. "A complex network analysis approach for identifying air traffic congestion based on independent component analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 364-381.
    2. Liu, Tiebing & Yao, Wenpo & Wu, Min & Shi, Zhaorong & Wang, Jun & Ning, Xinbao, 2017. "Multiscale permutation entropy analysis of electrocardiogram," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 492-498.
    3. Liu, Hongzhi & Zhang, Xingchen & Zhang, Xie, 2020. "Multiscale multifractal analysis on air traffic flow time series: A single airport departure flight case," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    4. Zhang, Xie & Liu, Hongzhi & Zhao, Yifei & Zhang, Xingchen, 2019. "Multifractal detrended fluctuation analysis on air traffic flow time series: A single airport case," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 531(C).
    5. Liu, Hongzhi & Zhang, Xingchen & Zhang, Xie, 2018. "Exploring dynamic evolution and fluctuation characteristics of air traffic flow volume time series: A single waypoint case," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 560-571.
    6. Liu, Hongzhi & Zhang, Xingchen & Zhang, Xie, 2020. "Multiscale complexity analysis on airport air traffic flow volume time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 548(C).
    7. Yin, Yi & Shang, Pengjian, 2016. "Weighted permutation entropy based on different symbolic approaches for financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 137-148.
    8. Niu, Hongli & Wang, Jun & Liu, Cheng, 2018. "Analysis of crude oil markets with improved multiscale weighted permutation entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 494(C), pages 389-402.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chandra, Aitichya & Verma, Ashish & Sooraj, K.P. & Padhi, Radhakant, 2023. "Modelling and assessment of the arrival and departure process at the terminal area: A case study of Chennai international airport," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 615(C).
    2. Olivares, Felipe & Sun, Xiaoqian & Wandelt, Sebastian & Zanin, Massimiliano, 2023. "Measuring landing independence and interactions using statistical physics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 170(C).
    3. Han, Yun-Feng & Jin, Ning-De & Zhai, Lu-Sheng & Ren, Ying-Yu & He, Yuan-Sheng, 2019. "An investigation of oil–water two-phase flow instability using multivariate multi-scale weighted permutation entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 518(C), pages 131-144.
    4. Haider Ali & Faheem Aslam & Paulo Ferreira, 2021. "Modeling Dynamic Multifractal Efficiency of US Electricity Market," Energies, MDPI, vol. 14(19), pages 1-16, September.
    5. Liu, Hongzhi & Zhang, Xingchen & Zhang, Xie, 2020. "Multiscale multifractal analysis on air traffic flow time series: A single airport departure flight case," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    6. Zhang, Mengyao & Huang, Tao & Guo, Zhaoxia & He, Zhenggang, 2022. "Complex-network-based traffic network analysis and dynamics: A comprehensive review," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    7. Chen, Yu & Ling, Guang & Song, Xiangxiang & Tu, Wenhui, 2023. "Characterizing the statistical complexity of nonlinear time series via ordinal pattern transition networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 618(C).
    8. Zhan, Cun & Liang, Chuan & Zhao, Lu & Zhang, Yaling & Cheng, Long & Jiang, Shouzheng & Xing, Liwen, 2021. "Multifractal characteristics analysis of daily reference evapotranspiration in different climate zones of China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    9. Li, Qiaoru & Zhang, Zhe & Li, Kun & Chen, Liang & Wei, Zhenlin & Zhang, Jingchun, 2020. "Evolutionary dynamics of traveling behavior in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    10. Guan, Sihai & Wan, Dongyu & Yang, Yanmiao & Biswal, Bharat, 2022. "Sources of multifractality of the brain rs-fMRI signal," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    11. Telli, Şahin & Chen, Hongzhuan & Zhao, Xufeng, 2022. "Detecting multifractality and exposing distributions of local fluctuations: Detrended fluctuation analysis with descriptive statistics pooling," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    12. Wan, Li & Ling, Guang & Guan, Zhi-Hong & Fan, Qingju & Tong, Yu-Han, 2022. "Fractional multiscale phase permutation entropy for quantifying the complexity of nonlinear time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    13. Min Su & Baoyang Hu & Yipeng Jiang & Zhenchao Zhang & Zeyang Li, 2022. "Relationship between the Chinese Main Air Transport Network and COVID-19 Pandemic Transmission," Mathematics, MDPI, vol. 10(13), pages 1-17, July.
    14. Min Su & Weixin Luan & Zeyang Li & Shulin Wan & Zhenchao Zhang, 2019. "Evolution and Determinants of an Air Transport Network: A Case Study of the Chinese Main Air Transport Network," Sustainability, MDPI, vol. 11(14), pages 1-20, July.
    15. Yan, Bo & Palit, Sanjay K. & Mukherjee, Sayan & Banerjee, Santo, 2019. "Signature of complexity in time–frequency domain," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    16. Gui, Jun & Zheng, Zeyu & Fu, Dianzheng & Fu, Yang & Liu, Zhi, 2021. "Long-term correlations and multifractality of toll-free calls in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 567(C).
    17. Liu, Hongzhi & Zhang, Xingchen & Zhang, Xie, 2020. "Multiscale complexity analysis on airport air traffic flow volume time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 548(C).
    18. Memon, Bilal Ahmed & Yao, Hongxing & Naveed, Hafiz Muhammad, 2022. "Examining the efficiency and herding behavior of commodity markets using multifractal detrended fluctuation analysis. Empirical evidence from energy, agriculture, and metal markets," Resources Policy, Elsevier, vol. 77(C).
    19. Sierra-Porta, D. & Domínguez-Monterroza, Andy-Rafael, 2022. "Linking cosmic ray intensities to cutoff rigidity through multifractal detrented fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    20. Zhang, Ningning & Lin, Aijing & Ma, Hui & Shang, Pengjian & Yang, Pengbo, 2018. "Weighted multivariate composite multiscale sample entropy analysis for the complexity of nonlinear times series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 595-607.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:165:y:2022:i:p1:s0960077922009742. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.