IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v153y2021ip2s0960077921008821.html
   My bibliography  Save this article

Theoretical assessment of cholera disease and its control measures

Author

Listed:
  • Hussain, Takasar
  • Ozair, Muhammad
  • Komal, Ammara
  • Awan, Aziz Ullah
  • Alshahrani, B.
  • Abdelwahab, Sayed F.
  • Abdel-Aty, Abdel-Haleem

Abstract

In this paper, the dynamics of cholera disease, using a mathematical model, have been investigated. The basic reproduction number, using the next generation matrix method, has been computed which informs us about disease spread or control among people. There are two types of equilibria: disease absent and disease present. Stabilities of both equilibria have been explored. The key factors which significantly involve in spreading the disease have been pointed out by calculating the sensitivity indices of the threshold parameter and examining the graphical results of basic reproduction number for different parameters. Intensity of parameters has also been observed through the variation of parameters. A control problem is designed to overcome the scattering of ailment. To get over the disease, the schemes are devised by considering the outcomes of sensitivity analysis. The problem was revisited to see the comparison of analytical and numerical results. It was discovered that numerical results support the analytical results.

Suggested Citation

  • Hussain, Takasar & Ozair, Muhammad & Komal, Ammara & Awan, Aziz Ullah & Alshahrani, B. & Abdelwahab, Sayed F. & Abdel-Aty, Abdel-Haleem, 2021. "Theoretical assessment of cholera disease and its control measures," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
  • Handle: RePEc:eee:chsofr:v:153:y:2021:i:p2:s0960077921008821
    DOI: 10.1016/j.chaos.2021.111528
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921008821
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.111528?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Singh, Harendra, 2020. "Analysis for fractional dynamics of Ebola virus model," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    2. Singh, Harendra, 2021. "Analysis of drug treatment of the fractional HIV infection model of CD4+ T-cells," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    3. Aaron A. King & Edward L. Ionides & Mercedes Pascual & Menno J. Bouma, 2008. "Inapparent infections and cholera dynamics," Nature, Nature, vol. 454(7206), pages 877-880, August.
    4. Singh, Harendra & Baleanu, Dumitru & Singh, Jagdev & Dutta, Hemen, 2021. "Computational study of fractional order smoking model," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khan, Hasib & Ibrahim, Muhammad & Abdel-Aty, Abdel-Haleem & Khashan, M. Motawi & Khan, Farhat Ali & Khan, Aziz, 2021. "A fractional order Covid-19 epidemic model with Mittag-Leffler kernel," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    2. Ain, Qura tul & Khan, Aziz & Ullah, Muhammad Irfan & Alqudah, Manar A. & Abdeljawad, Thabet, 2022. "On fractional impulsive system for methanol detoxification in human body," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    3. Acay, Bahar & Inc, Mustafa & Mustapha, Umar Tasiu & Yusuf, Abdullahi, 2021. "Fractional dynamics and analysis for a lana fever infectious ailment with Caputo operator," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    4. El-Mesady, A. & Elsonbaty, Amr & Adel, Waleed, 2022. "On nonlinear dynamics of a fractional order monkeypox virus model," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    5. Piotr Szczepocki, 2020. "Application of iterated filtering to stochastic volatility models based on non-Gaussian Ornstein-Uhlenbeck process," Statistics in Transition New Series, Polish Statistical Association, vol. 21(2), pages 173-187, June.
    6. David R J Pleydell & Samuel Soubeyrand & Sylvie Dallot & Gérard Labonne & Joël Chadœuf & Emmanuel Jacquot & Gaël Thébaud, 2018. "Estimation of the dispersal distances of an aphid-borne virus in a patchy landscape," PLOS Computational Biology, Public Library of Science, vol. 14(4), pages 1-24, April.
    7. Lindström, Erik, 2013. "Tuned iterated filtering," Statistics & Probability Letters, Elsevier, vol. 83(9), pages 2077-2080.
    8. King, Aaron A. & Nguyen, Dao & Ionides, Edward L., 2016. "Statistical Inference for Partially Observed Markov Processes via the R Package pomp," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 69(i12).
    9. Singh, Harendra, 2021. "Analysis of drug treatment of the fractional HIV infection model of CD4+ T-cells," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    10. Ross Sparks & Tim Keighley & David Muscatello, 2010. "Early warning CUSUM plans for surveillance of negative binomial daily disease counts," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(11), pages 1911-1929.
    11. Liu, Qun & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed & Ahmad, Bashir, 2020. "Stationary distribution of a stochastic cholera model between communities linked by migration," Applied Mathematics and Computation, Elsevier, vol. 373(C).
    12. Wan Yang & Alicia Karspeck & Jeffrey Shaman, 2014. "Comparison of Filtering Methods for the Modeling and Retrospective Forecasting of Influenza Epidemics," PLOS Computational Biology, Public Library of Science, vol. 10(4), pages 1-15, April.
    13. Gabriel Kolaye Guilsou & Moulay-Ahmed Aziz-Alaoui & Raymond Houé Ngouna & Bernard Archimede & Samuel Bowong, 2023. "Gaining Profound Knowledge of Cholera Outbreak: The Significance of the Allee Effect on Bacterial Population Growth and Its Implications for Human-Environment Health," Sustainability, MDPI, vol. 15(13), pages 1-30, June.
    14. David A Rasmussen & Oliver Ratmann & Katia Koelle, 2011. "Inference for Nonlinear Epidemiological Models Using Genealogies and Time Series," PLOS Computational Biology, Public Library of Science, vol. 7(8), pages 1-11, August.
    15. Singh, Harendra & Baleanu, Dumitru & Singh, Jagdev & Dutta, Hemen, 2021. "Computational study of fractional order smoking model," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    16. Ross, J.V. & Pagendam, D.E. & Pollett, P.K., 2009. "On parameter estimation in population models II: Multi-dimensional processes and transient dynamics," Theoretical Population Biology, Elsevier, vol. 75(2), pages 123-132.
    17. Hussain, Takasar & Aslam, Adnan & Ozair, Muhammad & Tasneem, Fatima & Gómez-Aguilar, J.F., 2021. "Dynamical aspects of pine wilt disease and control measures," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    18. Sourya Shrestha & Aaron A King & Pejman Rohani, 2011. "Statistical Inference for Multi-Pathogen Systems," PLOS Computational Biology, Public Library of Science, vol. 7(8), pages 1-14, August.
    19. Yohana Maiga Marwa & Isambi Sailon Mbalawata & Samuel Mwalili, 2019. "Continuous Time Markov Chain Model for Cholera Epidemic Transmission Dynamics," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 8(3), pages 1-32, November.
    20. Lawrence W Sheppard & Emma J Defriez & Philip C Reid & Daniel C Reuman, 2019. "Synchrony is more than its top-down and climatic parts: interacting Moran effects on phytoplankton in British seas," PLOS Computational Biology, Public Library of Science, vol. 15(3), pages 1-25, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:153:y:2021:i:p2:s0960077921008821. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.