IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v138y2020ics096007792030312x.html
   My bibliography  Save this article

Solutions to fractional neutral delay differential nonlocal systems

Author

Listed:
  • Valliammal, N.
  • Ravichandran, C.
  • Nisar, Kottakkaran Sooppy

Abstract

The study of neutral fractional delay system governed by nonlocal conditions is presented and proved. With the aid of fractional theory, noncompact measure and Mönch’s technique, we established some sufficient conditions to confirm the existence of neutral delay differential system. An illustration of derived results is also offered.

Suggested Citation

  • Valliammal, N. & Ravichandran, C. & Nisar, Kottakkaran Sooppy, 2020. "Solutions to fractional neutral delay differential nonlocal systems," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
  • Handle: RePEc:eee:chsofr:v:138:y:2020:i:c:s096007792030312x
    DOI: 10.1016/j.chaos.2020.109912
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007792030312X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.109912?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Danane, Jaouad & Allali, Karam & Hammouch, Zakia, 2020. "Mathematical analysis of a fractional differential model of HBV infection with antibody immune response," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    2. Fang Li & Gaston M. N'Guérékata, 2011. "An Existence Result for Neutral Delay Integrodifferential Equations with Fractional Order and Nonlocal Conditions," Abstract and Applied Analysis, Hindawi, vol. 2011, pages 1-20, November.
    3. Veeresha, P. & Baskonus, Haci Mehmet & Prakasha, D.G. & Gao, Wei & Yel, Gulnur, 2020. "Regarding new numerical solution of fractional Schistosomiasis disease arising in biological phenomena," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    4. JinRong Wang & Zhenbin Fan & Yong Zhou, 2012. "Nonlocal Controllability of Semilinear Dynamic Systems with Fractional Derivative in Banach Spaces," Journal of Optimization Theory and Applications, Springer, vol. 154(1), pages 292-302, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fendzi-Donfack, Emmanuel & Kamkou Temgoua, Gildas William & Djoufack, Zacharie Isidore & Kenfack-Jiotsa, Aurélien & Nguenang, Jean Pierre & Nana, Laurent, 2022. "Exotical solitons for an intrinsic fractional circuit using the sine-cosine method," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    2. Manjitha Mani Shalini & Nazek Alessa & Banupriya Kandasamy & Karuppusamy Loganathan & Maheswari Rangasamy, 2023. "On ν -Level Interval of Fuzzy Set for Fractional Order Neutral Impulsive Stochastic Differential System," Mathematics, MDPI, vol. 11(9), pages 1-18, April.
    3. Panda, Sumati Kumari & Ravichandran, C. & Hazarika, Bipan, 2021. "Results on system of Atangana–Baleanu fractional order Willis aneurysm and nonlinear singularly perturbed boundary value problems," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    4. Dhayal, Rajesh & Malik, Muslim, 2021. "Approximate controllability of fractional stochastic differential equations driven by Rosenblatt process with non-instantaneous impulses," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohamed M. Mousa & Fahad Alsharari, 2021. "A Comparative Numerical Study and Stability Analysis for a Fractional-Order SIR Model of Childhood Diseases," Mathematics, MDPI, vol. 9(22), pages 1-12, November.
    2. Ravichandran, C. & Logeswari, K. & Panda, Sumati Kumari & Nisar, Kottakkaran Sooppy, 2020. "On new approach of fractional derivative by Mittag-Leffler kernel to neutral integro-differential systems with impulsive conditions," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    3. Wang, JinRong & Fĕckan, Michal & Zhou, Yong, 2017. "Center stable manifold for planar fractional damped equations," Applied Mathematics and Computation, Elsevier, vol. 296(C), pages 257-269.
    4. Ahmed, Hamdy M. & Zhu, Quanxin, 2023. "Exploration nonlocal controllability for Hilfer fractional differential inclusions with Clarke subdifferential and nonlinear noise," Statistics & Probability Letters, Elsevier, vol. 195(C).
    5. Deniz, Sinan, 2021. "Optimal perturbation iteration method for solving fractional FitzHugh-Nagumo equation," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    6. Nuugulu, Samuel M & Gideon, Frednard & Patidar, Kailash C, 2021. "A robust numerical scheme for a time-fractional Black-Scholes partial differential equation describing stock exchange dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    7. Goyal, Manish & Baskonus, Haci Mehmet & Prakash, Amit, 2020. "Regarding new positive, bounded and convergent numerical solution of nonlinear time fractional HIV/AIDS transmission model," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    8. Amiri, Pari & Afshari, Hojjat, 2022. "Common fixed point results for multi-valued mappings in complex-valued double controlled metric spaces and their applications to the existence of solution of fractional integral inclusion systems," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    9. Attia, Nourhane & Akgül, Ali & Seba, Djamila & Nour, Abdelkader, 2020. "An efficient numerical technique for a biological population model of fractional order," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    10. Raquel Sánchez-Marqués & Santiago Mas-Coma & Joaquín Salas-Coronas & Jerôme Boissier & María Dolores Bargues, 2022. "Research on Schistosomiasis in the Era of the COVID-19 Pandemic: A Bibliometric Analysis," IJERPH, MDPI, vol. 19(13), pages 1-14, June.
    11. Almutairi, Ohud & Kiliçman, Adem, 2021. "Generalized Fejér–Hermite–Hadamard type via generalized (h−m)-convexity on fractal sets and applications," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    12. Akgül, Esra Karatas & Akgül, Ali & Yavuz, Mehmet, 2021. "New Illustrative Applications of Integral Transforms to Financial Models with Different Fractional Derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    13. Raja, M. Mohan & Vijayakumar, V. & Udhayakumar, R., 2020. "Results on the existence and controllability of fractional integro-differential system of order 1 < r < 2 via measure of noncompactness," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    14. Boudaoui, Ahmed & El hadj Moussa, Yacine & Hammouch, Zakia & Ullah, Saif, 2021. "A fractional-order model describing the dynamics of the novel coronavirus (COVID-19) with nonsingular kernel," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    15. Michal Fec̆kan & JinRong Wang & Yong Zhou, 2013. "Controllability of Fractional Functional Evolution Equations of Sobolev Type via Characteristic Solution Operators," Journal of Optimization Theory and Applications, Springer, vol. 156(1), pages 79-95, January.
    16. JinRong Wang & Michal Fec̆kan & Yong Zhou, 2013. "Relaxed Controls for Nonlinear Fractional Impulsive Evolution Equations," Journal of Optimization Theory and Applications, Springer, vol. 156(1), pages 13-32, January.
    17. Alka Chadha & Dwijendra N. Pandey, 2018. "Approximate Controllability of a Neutral Stochastic Fractional Integro-Differential Inclusion with Nonlocal Conditions," Journal of Theoretical Probability, Springer, vol. 31(2), pages 705-740, June.
    18. Zheng, Xiangcheng & Wang, Hong & Fu, Hongfei, 2020. "Well-posedness of fractional differential equations with variable-order Caputo-Fabrizio derivative," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    19. Rashid, Saima & Sultana, Sobia & Jarad, Fahd & Jafari, Hossein & Hamed, Y.S., 2021. "More efficient estimates via ℏ-discrete fractional calculus theory and applications," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    20. Ameen, I. & Baleanu, Dumitru & Ali, Hegagi Mohamed, 2020. "An efficient algorithm for solving the fractional optimal control of SIRV epidemic model with a combination of vaccination and treatment," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:138:y:2020:i:c:s096007792030312x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.