IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v130y2020ics0960077919303832.html
   My bibliography  Save this article

MHD Influence on different water based nanofluids (TiO2, Al2O3, CuO) in porous medium with chemical reaction and newtonian heating

Author

Listed:
  • Aleem, Maryam
  • Asjad, Muhammad Imran
  • Shaheen, Aqila
  • Khan, Ilyas

Abstract

The present study is aimed to provide the unsteady MHD nanofluid’s flow passing through an accelerating infinite vertical plate situated in porous medium. The flow is effected by thermal radiation, Newtonian heating and chemical reaction. Water is considered as conventional base fluid comprising of five different types of nano particles such as Titanium oxide (TiO2), Aluminium Oxide (Al2O3), Copper Oxide (CuO), Silver (Ag) and Copper (Cu). By using dimensional analysis, the governing equations for temperature, velocity and concentration are reduced to dimensionless and after that these classical equations of present model are generalized to Caputo and Caputo-Fabrizio fractional derivatives. Semi-exact solutions for these equations are obtained via Laplace transform method. Inversion algorithms (Tzou’s and Stehfest’s) are applied to find the inverse Laplace transform. At last the comparison of water based nanofluids suspended with five different types of nano particles is drawn and effect of nanoparticles as well as fractional parameters (α, β, γ) on temperature and velocity can be seen by software Mathcad. We concluded that Ag-water nanofluid has greater temperature due to its greater value of thermal conductivity as compare to others. Whereas Al2O3-water has greater velocity because these particles are less denser than TiO2, Cu, Ag, CuO. Further we can see that by increasing the value of fractional parameters velocity as well as temperature decreases. Fluid flow can be enhanced with Caputo fractional model while Caputo-Fabrizio decays faster than Caputo and hence well suited in exhibiting the memory of the flow problem at certain time.

Suggested Citation

  • Aleem, Maryam & Asjad, Muhammad Imran & Shaheen, Aqila & Khan, Ilyas, 2020. "MHD Influence on different water based nanofluids (TiO2, Al2O3, CuO) in porous medium with chemical reaction and newtonian heating," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
  • Handle: RePEc:eee:chsofr:v:130:y:2020:i:c:s0960077919303832
    DOI: 10.1016/j.chaos.2019.109437
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077919303832
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2019.109437?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Imran, M.A. & Aleem, Maryam & Riaz, M.B. & Ali, Rizwan & Khan, Ilyas, 2019. "A comprehensive report on convective flow of fractional (ABC) and (CF) MHD viscous fluid subject to generalized boundary conditions," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 274-289.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Puneeth, V. & Manjunatha, S. & Madhukesh, J.K. & Ramesh, G.K., 2021. "Three dimensional mixed convection flow of hybrid casson nanofluid past a non-linear stretching surface: A modified Buongiorno’s model aspects," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    2. K. M. Pavithra & B. N. Hanumagowda & S. Suresh Kumar Raju & S. V. K. Varma & Nimer Murshid & Hasan Mulki & Wael Al-Kouz, 2023. "Thermal Radiation and Mass Transfer Analysis in an Inclined Channel Flow of a Clear Viscous Fluid and H 2 O/EG-Based Nanofluids through a Porous Medium," Sustainability, MDPI, vol. 15(5), pages 1-24, February.
    3. Imran, M.A., 2020. "Application of fractal fractional derivative of power law kernel (FFP0Dxα,β) to MHD viscous fluid flow between two plates," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ghanbari, Behzad & Atangana, Abdon, 2020. "A new application of fractional Atangana–Baleanu derivatives: Designing ABC-fractional masks in image processing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
    2. Ravi Kanth, A.S.V. & Devi, Sangeeta, 2021. "A practical numerical approach to solve a fractional Lotka–Volterra population model with non-singular and singular kernels," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    3. Owolabi, Kolade M. & Atangana, Abdon, 2019. "Mathematical analysis and computational experiments for an epidemic system with nonlocal and nonsingular derivative," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 41-49.
    4. Asjad, Muhammad Imran & Sunthrayuth, Pongsakorn & Ikram, Muhammad Danish & Muhammad, Taseer & Alshomrani, Ali Saleh, 2022. "Analysis of non-singular fractional bioconvection and thermal memory with generalized Mittag-Leffler kernel," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    5. Shit, G.C. & Maiti, S. & Roy, M. & Misra, J.C., 2019. "Pulsatile flow and heat transfer of blood in an overlapping vibrating atherosclerotic artery: A numerical study," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 166(C), pages 432-450.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:130:y:2020:i:c:s0960077919303832. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.