IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v104y2017icp378-388.html
   My bibliography  Save this article

Existence of solutions for a sequential fractional integro-differential system with coupled integral boundary conditions

Author

Listed:
  • Ahmad, Bashir
  • Luca, Rodica

Abstract

We investigate the existence and uniqueness of solutions for a system of nonlinear Caputo type sequential fractional integro-differential equations with coupled Riemann–Stieltjes integral boundary conditions, by using the Leray–Schauder alternative and the Banach contraction principle. Two examples are also presented to illustrate our results.

Suggested Citation

  • Ahmad, Bashir & Luca, Rodica, 2017. "Existence of solutions for a sequential fractional integro-differential system with coupled integral boundary conditions," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 378-388.
  • Handle: RePEc:eee:chsofr:v:104:y:2017:i:c:p:378-388
    DOI: 10.1016/j.chaos.2017.08.035
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077917303545
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2017.08.035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ahmad, Bashir & Ntouyas, Sotiris K. & Alsaedi, Ahmed, 2016. "On a coupled system of fractional differential equations with coupled nonlocal and integral boundary conditions," Chaos, Solitons & Fractals, Elsevier, vol. 83(C), pages 234-241.
    2. Jia, Mei & Liu, Xiping, 2014. "Multiplicity of solutions for integral boundary value problems of fractional differential equations with upper and lower solutions," Applied Mathematics and Computation, Elsevier, vol. 232(C), pages 313-323.
    3. J. Caballero & I. Cabrera & K. Sadarangani, 2012. "Positive Solutions of Nonlinear Fractional Differential Equations with Integral Boundary Value Conditions," Abstract and Applied Analysis, Hindawi, vol. 2012, pages 1-11, October.
    4. Ahmad, Bashir & K. Ntouyas, Sotiris, 2015. "Existence results for a coupled system of Caputo type sequential fractional differential equations with nonlocal integral boundary conditions," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 615-622.
    5. Aljoudi, Shorog & Ahmad, Bashir & Nieto, Juan J. & Alsaedi, Ahmed, 2016. "A coupled system of Hadamard type sequential fractional differential equations with coupled strip conditions," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 39-46.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmad, Bashir & Luca, Rodica, 2018. "Existence of solutions for sequential fractional integro-differential equations and inclusions with nonlocal boundary conditions," Applied Mathematics and Computation, Elsevier, vol. 339(C), pages 516-534.
    2. Ahmed Salem & Faris Alzahrani & Lamya Almaghamsi, 2019. "Fractional Langevin Equations with Nonlocal Integral Boundary Conditions," Mathematics, MDPI, vol. 7(5), pages 1-10, May.
    3. Johnny Henderson & Rodica Luca & Alexandru Tudorache, 2021. "Positive Solutions for a System of Coupled Semipositone Fractional Boundary Value Problems with Sequential Fractional Derivatives," Mathematics, MDPI, vol. 9(7), pages 1-22, April.
    4. Ahmed Alsaedi & Rodica Luca & Bashir Ahmad, 2020. "Existence of Positive Solutions for a System of Singular Fractional Boundary Value Problems with p -Laplacian Operators," Mathematics, MDPI, vol. 8(11), pages 1-18, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmad, Bashir & Luca, Rodica, 2018. "Existence of solutions for sequential fractional integro-differential equations and inclusions with nonlocal boundary conditions," Applied Mathematics and Computation, Elsevier, vol. 339(C), pages 516-534.
    2. Almalahi, Mohammed A. & Panchal, Satish K. & Jarad, Fahd, 2021. "Stability results of positive solutions for a system of ψ -Hilfer fractional differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    3. Ding, Dawei & Yan, Jie & Wang, Nian & Liang, Dong, 2017. "Pinning synchronization of fractional order complex-variable dynamical networks with time-varying coupling," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 41-50.
    4. Agarwal, Ravi P. & Ahmad, Bashir & Garout, Doa’a & Alsaedi, Ahmed, 2017. "Existence results for coupled nonlinear fractional differential equations equipped with nonlocal coupled flux and multi-point boundary conditions," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 149-161.
    5. Liu, Xiping & Jia, Mei, 2019. "Solvability and numerical simulations for BVPs of fractional coupled systems involving left and right fractional derivatives," Applied Mathematics and Computation, Elsevier, vol. 353(C), pages 230-242.
    6. Nemat Nyamoradi & Sotiris K. Ntouyas & Jessada Tariboon, 2022. "Existence and Uniqueness of Solutions for Fractional Integro-Differential Equations Involving the Hadamard Derivatives," Mathematics, MDPI, vol. 10(17), pages 1-15, August.
    7. Shahram Rezapour & Salim Ben Chikh & Abdelkader Amara & Sotiris K. Ntouyas & Jessada Tariboon & Sina Etemad, 2021. "Existence Results for Caputo–Hadamard Nonlocal Fractional Multi-Order Boundary Value Problems," Mathematics, MDPI, vol. 9(7), pages 1-17, March.
    8. Zeid, Samaneh Soradi, 2019. "Approximation methods for solving fractional equations," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 171-193.
    9. Nazim I Mahmudov & Sameer Bawaneh & Areen Al-Khateeb, 2019. "On a Coupled System of Fractional Differential Equations with Four Point Integral Boundary Conditions," Mathematics, MDPI, vol. 7(3), pages 1-14, March.
    10. Abdelkader Moumen & Abdelaziz Mennouni & Mohamed Bouye, 2023. "A Novel Vieta–Fibonacci Projection Method for Solving a System of Fractional Integrodifferential Equations," Mathematics, MDPI, vol. 11(18), pages 1-14, September.
    11. Nazim I Mahmudov & Areen Al-Khateeb, 2019. "Stability, Existence and Uniqueness of Boundary Value Problems for a Coupled System of Fractional Differential Equations," Mathematics, MDPI, vol. 7(4), pages 1-12, April.
    12. Aljoudi, Shorog & Ahmad, Bashir & Nieto, Juan J. & Alsaedi, Ahmed, 2016. "A coupled system of Hadamard type sequential fractional differential equations with coupled strip conditions," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 39-46.
    13. Bashir Ahmad & Ahmed Alsaedi & Sotiris K. Ntouyas & Hamed H. Al-Sulami, 2019. "On Neutral Functional Differential Inclusions involving Hadamard Fractional Derivatives," Mathematics, MDPI, vol. 7(11), pages 1-13, November.
    14. Zhao, Yulin & Chen, Haibo & Qin, Bin, 2015. "Multiple solutions for a coupled system of nonlinear fractional differential equations via variational methods," Applied Mathematics and Computation, Elsevier, vol. 257(C), pages 417-427.
    15. Zhao, Yulin & Chen, Haibo & Xu, Chengjie, 2017. "Nontrivial solutions for impulsive fractional differential equations via Morse theory," Applied Mathematics and Computation, Elsevier, vol. 307(C), pages 170-179.
    16. Jiqiang Jiang & Donal O’Regan & Jiafa Xu & Yujun Cui, 2019. "Positive Solutions for a Hadamard Fractional p -Laplacian Three-Point Boundary Value Problem," Mathematics, MDPI, vol. 7(5), pages 1-20, May.
    17. Ahmad, Bashir & Ntouyas, Sotiris K. & Alsaedi, Ahmed, 2016. "On a coupled system of fractional differential equations with coupled nonlocal and integral boundary conditions," Chaos, Solitons & Fractals, Elsevier, vol. 83(C), pages 234-241.
    18. Pei, Ke & Wang, Guotao & Sun, Yanyan, 2017. "Successive iterations and positive extremal solutions for a Hadamard type fractional integro-differential equations on infinite domain," Applied Mathematics and Computation, Elsevier, vol. 312(C), pages 158-168.
    19. Ahmed Alsaedi & Rodica Luca & Bashir Ahmad, 2020. "Existence of Positive Solutions for a System of Singular Fractional Boundary Value Problems with p -Laplacian Operators," Mathematics, MDPI, vol. 8(11), pages 1-18, October.
    20. Youzheng Ding & Jiafa Xu & Zhengqing Fu, 2019. "Positive Solutions for a System of Fractional Integral Boundary Value Problems of Riemann–Liouville Type Involving Semipositone Nonlinearities," Mathematics, MDPI, vol. 7(10), pages 1-19, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:104:y:2017:i:c:p:378-388. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.