IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i11p1890-d438019.html
   My bibliography  Save this article

Existence of Positive Solutions for a System of Singular Fractional Boundary Value Problems with p -Laplacian Operators

Author

Listed:
  • Ahmed Alsaedi

    (Nonlinear Analysis and Applied Mathematics (NAAM)-Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia)

  • Rodica Luca

    (Department of Mathematics, Gh. Asachi Technical University, 11 Blvd. Carol I, 700506 Iasi, Romania)

  • Bashir Ahmad

    (Nonlinear Analysis and Applied Mathematics (NAAM)-Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia)

Abstract

We investigate the existence and multiplicity of positive solutions for a system of Riemann–Liouville fractional differential equations with singular nonnegative nonlinearities and p -Laplacian operators, subject to nonlocal boundary conditions which contain fractional derivatives and Riemann–Stieltjes integrals.

Suggested Citation

  • Ahmed Alsaedi & Rodica Luca & Bashir Ahmad, 2020. "Existence of Positive Solutions for a System of Singular Fractional Boundary Value Problems with p -Laplacian Operators," Mathematics, MDPI, vol. 8(11), pages 1-18, October.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:11:p:1890-:d:438019
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/11/1890/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/11/1890/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Fang & Liu, Lishan & Wu, Yonghong, 2020. "A numerical algorithm for a class of fractional BVPs with p-Laplacian operator and singularity-the convergence and dependence analysis," Applied Mathematics and Computation, Elsevier, vol. 382(C).
    2. Aljoudi, Shorog & Ahmad, Bashir & Nieto, Juan J. & Alsaedi, Ahmed, 2016. "A coupled system of Hadamard type sequential fractional differential equations with coupled strip conditions," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 39-46.
    3. Johnny Henderson & Rodica Luca & Alexandru Tudorache, 2016. "Existence and Nonexistence of Positive Solutions for Coupled Riemann-Liouville Fractional Boundary Value Problems," Discrete Dynamics in Nature and Society, Hindawi, vol. 2016, pages 1-12, July.
    4. Ahmad, Bashir & Luca, Rodica, 2018. "Existence of solutions for sequential fractional integro-differential equations and inclusions with nonlocal boundary conditions," Applied Mathematics and Computation, Elsevier, vol. 339(C), pages 516-534.
    5. Ahmad, Bashir & Luca, Rodica, 2017. "Existence of solutions for a sequential fractional integro-differential system with coupled integral boundary conditions," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 378-388.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmed Salem & Faris Alzahrani & Lamya Almaghamsi, 2019. "Fractional Langevin Equations with Nonlocal Integral Boundary Conditions," Mathematics, MDPI, vol. 7(5), pages 1-10, May.
    2. Johnny Henderson & Rodica Luca & Alexandru Tudorache, 2021. "Positive Solutions for a System of Coupled Semipositone Fractional Boundary Value Problems with Sequential Fractional Derivatives," Mathematics, MDPI, vol. 9(7), pages 1-22, April.
    3. Ahmad, Bashir & Luca, Rodica, 2018. "Existence of solutions for sequential fractional integro-differential equations and inclusions with nonlocal boundary conditions," Applied Mathematics and Computation, Elsevier, vol. 339(C), pages 516-534.
    4. Ahmed Alsaedi & Amjad F. Albideewi & Sotiris K. Ntouyas & Bashir Ahmad, 2020. "On Caputo–Riemann–Liouville Type Fractional Integro-Differential Equations with Multi-Point Sub-Strip Boundary Conditions," Mathematics, MDPI, vol. 8(11), pages 1-14, October.
    5. Nemat Nyamoradi & Sotiris K. Ntouyas & Jessada Tariboon, 2022. "Existence and Uniqueness of Solutions for Fractional Integro-Differential Equations Involving the Hadamard Derivatives," Mathematics, MDPI, vol. 10(17), pages 1-15, August.
    6. Shahram Rezapour & Salim Ben Chikh & Abdelkader Amara & Sotiris K. Ntouyas & Jessada Tariboon & Sina Etemad, 2021. "Existence Results for Caputo–Hadamard Nonlocal Fractional Multi-Order Boundary Value Problems," Mathematics, MDPI, vol. 9(7), pages 1-17, March.
    7. Almalahi, Mohammed A. & Panchal, Satish K. & Jarad, Fahd, 2021. "Stability results of positive solutions for a system of ψ -Hilfer fractional differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    8. Bashir Ahmad & Abrar Broom & Ahmed Alsaedi & Sotiris K. Ntouyas, 2020. "Nonlinear Integro-Differential Equations Involving Mixed Right and Left Fractional Derivatives and Integrals with Nonlocal Boundary Data," Mathematics, MDPI, vol. 8(3), pages 1-13, March.
    9. Jong, KumSong & Choi, HuiChol & Kim, MunChol & Kim, KwangHyok & Jo, SinHyok & Ri, Ok, 2021. "On the solvability and approximate solution of a one-dimensional singular problem for a p-Laplacian fractional differential equation," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    10. Wei Zhang & Wenbin Liu, 2020. "Existence of Solutions for Fractional Multi-Point Boundary Value Problems on an Infinite Interval at Resonance," Mathematics, MDPI, vol. 8(1), pages 1-22, January.
    11. Ding, Dawei & Yan, Jie & Wang, Nian & Liang, Dong, 2017. "Pinning synchronization of fractional order complex-variable dynamical networks with time-varying coupling," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 41-50.
    12. Jiqiang Jiang & Donal O’Regan & Jiafa Xu & Yujun Cui, 2019. "Positive Solutions for a Hadamard Fractional p -Laplacian Three-Point Boundary Value Problem," Mathematics, MDPI, vol. 7(5), pages 1-20, May.
    13. Agarwal, Ravi P. & Ahmad, Bashir & Garout, Doa’a & Alsaedi, Ahmed, 2017. "Existence results for coupled nonlinear fractional differential equations equipped with nonlocal coupled flux and multi-point boundary conditions," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 149-161.
    14. Bashir Ahmad & Ymnah Alruwaily & Ahmed Alsaedi & Sotiris K. Ntouyas, 2019. "Existence and Stability Results for a Fractional Order Differential Equation with Non-Conjugate Riemann-Stieltjes Integro-Multipoint Boundary Conditions," Mathematics, MDPI, vol. 7(3), pages 1-14, March.
    15. Pei, Ke & Wang, Guotao & Sun, Yanyan, 2017. "Successive iterations and positive extremal solutions for a Hadamard type fractional integro-differential equations on infinite domain," Applied Mathematics and Computation, Elsevier, vol. 312(C), pages 158-168.
    16. Youzheng Ding & Jiafa Xu & Zhengqing Fu, 2019. "Positive Solutions for a System of Fractional Integral Boundary Value Problems of Riemann–Liouville Type Involving Semipositone Nonlinearities," Mathematics, MDPI, vol. 7(10), pages 1-19, October.
    17. Ahmad, Bashir & Luca, Rodica, 2017. "Existence of solutions for a sequential fractional integro-differential system with coupled integral boundary conditions," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 378-388.
    18. Shahram Rezapour & Sotiris K. Ntouyas & Abdelkader Amara & Sina Etemad & Jessada Tariboon, 2021. "Some Existence and Dependence Criteria of Solutions to a Fractional Integro-Differential Boundary Value Problem via the Generalized Gronwall Inequality," Mathematics, MDPI, vol. 9(11), pages 1-22, May.
    19. Fang Wang & Lishan Liu & Yonghong Wu & Yumei Zou, 2019. "Iterative Analysis of the Unique Positive Solution for a Class of Singular Nonlinear Boundary Value Problems Involving Two Types of Fractional Derivatives with p -Laplacian Operator," Complexity, Hindawi, vol. 2019, pages 1-21, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:11:p:1890-:d:438019. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.