IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v307y2017icp170-179.html
   My bibliography  Save this article

Nontrivial solutions for impulsive fractional differential equations via Morse theory

Author

Listed:
  • Zhao, Yulin
  • Chen, Haibo
  • Xu, Chengjie

Abstract

In this paper we study the existence of nontrivial solutions for an impulsive fractional differential equation with Dirichlet boundary conditions. By using Morse theory coupled with local linking arguments, we obtain some new criteria to guarantee that the impulsive fractional differential equations have at least one nontrivial solution.

Suggested Citation

  • Zhao, Yulin & Chen, Haibo & Xu, Chengjie, 2017. "Nontrivial solutions for impulsive fractional differential equations via Morse theory," Applied Mathematics and Computation, Elsevier, vol. 307(C), pages 170-179.
  • Handle: RePEc:eee:apmaco:v:307:y:2017:i:c:p:170-179
    DOI: 10.1016/j.amc.2017.02.045
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S009630031730156X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2017.02.045?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Hongxia Shi & Haibo Chen, 2016. "Multiplicity results for a class of boundary value problems with impulsive effects," Mathematische Nachrichten, Wiley Blackwell, vol. 289(5-6), pages 718-726, April.
    2. Zhao, Yulin & Chen, Haibo & Qin, Bin, 2015. "Multiple solutions for a coupled system of nonlinear fractional differential equations via variational methods," Applied Mathematics and Computation, Elsevier, vol. 257(C), pages 417-427.
    3. Jia, Mei & Liu, Xiping, 2014. "Multiplicity of solutions for integral boundary value problems of fractional differential equations with upper and lower solutions," Applied Mathematics and Computation, Elsevier, vol. 232(C), pages 313-323.
    4. Nyamoradi, Nemat & Rodríguez-López, Rosana, 2015. "On boundary value problems for impulsive fractional differential equations," Applied Mathematics and Computation, Elsevier, vol. 271(C), pages 874-892.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Youzheng Ding & Jiafa Xu & Zhengqing Fu, 2019. "Positive Solutions for a System of Fractional Integral Boundary Value Problems of Riemann–Liouville Type Involving Semipositone Nonlinearities," Mathematics, MDPI, vol. 7(10), pages 1-19, October.
    2. Yulin Zhao & Jiafa Xu & Haibo Chen, 2019. "Variational Methods for an Impulsive Fractional Differential Equations with Derivative Term," Mathematics, MDPI, vol. 7(10), pages 1-15, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nyamoradi, Nemat & Rodríguez-López, Rosana, 2015. "On boundary value problems for impulsive fractional differential equations," Applied Mathematics and Computation, Elsevier, vol. 271(C), pages 874-892.
    2. Zhao, Yulin & Chen, Haibo & Qin, Bin, 2015. "Multiple solutions for a coupled system of nonlinear fractional differential equations via variational methods," Applied Mathematics and Computation, Elsevier, vol. 257(C), pages 417-427.
    3. Ahmad, Bashir & Luca, Rodica, 2017. "Existence of solutions for a sequential fractional integro-differential system with coupled integral boundary conditions," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 378-388.
    4. Salari, Amjad & Ghanbari, Behzad, 2019. "Existence and multiplicity for some boundary value problems involving Caputo and Atangana–Baleanu fractional derivatives: A variational approach," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 312-317.
    5. Yulin Zhao & Jiafa Xu & Haibo Chen, 2019. "Variational Methods for an Impulsive Fractional Differential Equations with Derivative Term," Mathematics, MDPI, vol. 7(10), pages 1-15, September.
    6. Fares Kamache & Rafik Guefaifia & Salah Boulaaras & Asma Alharbi, 2020. "Existence of Weak Solutions for a New Class of Fractional p -Laplacian Boundary Value Systems," Mathematics, MDPI, vol. 8(4), pages 1-18, March.
    7. Danyang Kang & Cuiling Liu & Xingyong Zhang, 2020. "Existence of Solutions for Kirchhoff-Type Fractional Dirichlet Problem with p -Laplacian," Mathematics, MDPI, vol. 8(1), pages 1-17, January.
    8. Dongdong Gao & Jianli Li, 2021. "New results for impulsive fractional differential equations through variational methods," Mathematische Nachrichten, Wiley Blackwell, vol. 294(10), pages 1866-1878, October.
    9. Liu, Xiping & Jia, Mei, 2019. "Solvability and numerical simulations for BVPs of fractional coupled systems involving left and right fractional derivatives," Applied Mathematics and Computation, Elsevier, vol. 353(C), pages 230-242.
    10. Ahmad, Bashir & Luca, Rodica, 2018. "Existence of solutions for sequential fractional integro-differential equations and inclusions with nonlocal boundary conditions," Applied Mathematics and Computation, Elsevier, vol. 339(C), pages 516-534.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:307:y:2017:i:c:p:170-179. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.