IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v104y2017icp209-214.html
   My bibliography  Save this article

Comparison of two mean-field based theoretical analysis methods for SIS model

Author

Listed:
  • Zhang, Jiaquan
  • Lu, Dan
  • Yang, Shunkun

Abstract

Epidemic spreading has been intensively studied in SIS epidemic model. Although the mean-field theory of SIS model has been widely used in the research, there is a lack of comparative results between different theoretical calculations, and the differences between them should be systematically explained. In this paper, we have compared different theoretical solutions for mean-field theory and explained the underlying reason. We first describe the differences between different equations for mean-field theory in different networks. The results show that the difference between mean-field reaction equations is due to the different probability consideration for the infection process. This finding will help us to design better theoretical solutions for epidemic models.

Suggested Citation

  • Zhang, Jiaquan & Lu, Dan & Yang, Shunkun, 2017. "Comparison of two mean-field based theoretical analysis methods for SIS model," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 209-214.
  • Handle: RePEc:eee:chsofr:v:104:y:2017:i:c:p:209-214
    DOI: 10.1016/j.chaos.2017.08.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007791730320X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2017.08.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Qingchu & Fu, Xinchu, 2016. "Immunization and epidemic threshold of an SIS model in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 576-581.
    2. Meng Liu & Daqing Li & Pengju Qin & Chaoran Liu & Huijuan Wang & Feilong Wang, 2015. "Epidemics in Interconnected Small-World Networks," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-9, March.
    3. D. Q. Li & M. H. Li & J. S. Wu & Z. R. Di & Y. Fan, 2007. "Enhancing synchronizability by weight randomization on regular networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 57(4), pages 423-428, June.
    4. Jianxi Gao & Xueming Liu & Daqing Li & Shlomo Havlin, 2015. "Recent Progress on the Resilience of Complex Networks," Energies, MDPI, vol. 8(10), pages 1-24, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mukisa, Nicholas & Zamora, Ramon & Lie, Tek Tjing, 2022. "Multi criteria analysis of alternative energy technologies based on their predicted impact on community sustainable livelihoods capitals: A case of Uganda," Renewable Energy, Elsevier, vol. 182(C), pages 1103-1125.
    2. Wu, Qingchu & Zhou, Rong & Hadzibeganovic, Tarik, 2019. "Conditional quenched mean-field approach for recurrent-state epidemic dynamics in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 518(C), pages 71-79.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fauzan Hanif Jufri & Jun-Sung Kim & Jaesung Jung, 2017. "Analysis of Determinants of the Impact and the Grid Capability to Evaluate and Improve Grid Resilience from Extreme Weather Event," Energies, MDPI, vol. 10(11), pages 1-17, November.
    2. Lei Che & Jiangang Xu & Hong Chen & Dongqi Sun & Bao Wang & Yunuo Zheng & Xuedi Yang & Zhongren Peng, 2022. "Evaluation of the Spatial Effect of Network Resilience in the Yangtze River Delta: An Integrated Framework for Regional Collaboration and Governance under Disruption," Land, MDPI, vol. 11(8), pages 1-20, August.
    3. Yi Liu & Senbin Yu & Chaoyang Zhang & Peiran Zhang & Yang Wang & Liang Gao, 2022. "Critical Percolation on Temporal High-Speed Railway Networks," Mathematics, MDPI, vol. 10(24), pages 1-8, December.
    4. Wang, Wei & Li, Wenyao & Lin, Tao & Wu, Tao & Pan, Liming & Liu, Yanbing, 2022. "Generalized k-core percolation on higher-order dependent networks," Applied Mathematics and Computation, Elsevier, vol. 420(C).
    5. Zhu, Qian & Zhu, Zhiliang & Wang, Yifan & Yu, Hai, 2016. "Fuzzy-information-based robustness of interconnected networks against attacks and failures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 458(C), pages 194-203.
    6. Fan, Chong-jun & Jin, Yang & Huo, Liang-an & Liu, Chen & Yang, Yun-peng & Wang, Ya-qiong, 2016. "Effect of individual behavior on the interplay between awareness and disease spreading in multiplex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 523-530.
    7. Jia, Peng & Liu, Jiayong & Fang, Yong & Liu, Liang & Liu, Luping, 2018. "Modeling and analyzing malware propagation in social networks with heterogeneous infection rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 240-254.
    8. Li, Xun & Cao, Lang, 2016. "Diffusion processes of fragmentary information on scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 624-634.
    9. Liquan Xu & Zhentian Zhang & Gangyi Tan & Junqing Zhou & Yang Wang, 2022. "Analysis on the Evolution and Resilience of Ecological Network Structure in Wuhan Metropolitan Area," Sustainability, MDPI, vol. 14(14), pages 1-16, July.
    10. Shen, Ai-Zhong & Guo, Jin-Li & Suo, Qi, 2017. "Study of the variable growth hypernetworks influence on the scaling law," Chaos, Solitons & Fractals, Elsevier, vol. 97(C), pages 84-89.
    11. Xiao-Long Ren & Niels Gleinig & Dijana Tolić & Nino Antulov-Fantulin, 2018. "Underestimated Cost of Targeted Attacks on Complex Networks," Complexity, Hindawi, vol. 2018, pages 1-15, January.
    12. Li, Yinwei & Jiang, Guo-Ping & Wu, Meng & Song, Yu-Rong & Wang, Haiyan, 2021. "Undirected Congruence Model: Topological characteristics and epidemic spreading," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    13. Pilwon Kim & Chang Hyeong Lee, 2018. "Epidemic Spreading in Complex Networks with Resilient Nodes: Applications to FMD," Complexity, Hindawi, vol. 2018, pages 1-9, March.
    14. Peter Lustenberger & Felix Schumacher & Matteo Spada & Peter Burgherr & Bozidar Stojadinovic, 2019. "Assessing the Performance of the European Natural Gas Network for Selected Supply Disruption Scenarios Using Open-Source Information," Energies, MDPI, vol. 12(24), pages 1-28, December.
    15. Kim, Dong Hwan & Eisenberg, Daniel A. & Chun, Yeong Han & Park, Jeryang, 2017. "Network topology and resilience analysis of South Korean power grid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 13-24.
    16. Xu, Sheng & Tu, Haicheng & Xia, Yongxiang, 2023. "Resilience enhancement of renewable cyber–physical power system against malware attacks," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    17. De Montis, Andrea & Ganciu, Amedeo & Cabras, Matteo & Bardi, Antonietta & Peddio, Valentina & Caschili, Simone & Massa, Pierangelo & Cocco, Chiara & Mulas, Maurizio, 2019. "Resilient ecological networks: A comparative approach," Land Use Policy, Elsevier, vol. 89(C).
    18. Sun, Qingru & Gao, Xiangyun & Zhong, Weiqiong & Liu, Nairong, 2017. "The stability of the international oil trade network from short-term and long-term perspectives," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 345-356.
    19. Kar, Sanjay Kumar & Sharma, Atul & Roy, Biswajit, 2016. "Solar energy market developments in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 121-133.
    20. Fang Zhou & Xiang He & Yongbo Yuan & Mingyuan Zhang, 2020. "Influence of Interlink Topology on Multilayer Network Robustness," Sustainability, MDPI, vol. 12(3), pages 1-19, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:104:y:2017:i:c:p:209-214. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.