IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v88y2011i9p3022-3029.html
   My bibliography  Save this article

Effect of interface layer on the cooling performance of a single thermoelement

Author

Listed:
  • Yamashita, Osamu

Abstract

The resultant thermoelectric (TE) figure of merit Z, the coefficient of performance (COP), the heat pumping capacity per unit area (Qc/S) were derived analytically as functions of l0, ρc, κc and sc for a single thermoelement (STE) by taking into account the interface layers, where l0 is a length of a TE material, ρc the electrical interface resistivity, κc the thermal interface conductivity and sc the ratio of the Seebeck coefficient of an interface layer to that of a TE material. As a result, it was first revealed that the increase in Z0T of a TE material is not necessarily reflected in the increase in ZT of an STE as long as the interface layers are present. The COP and Qc/S are lowered remarkably for sc=0 and κc⩽104W/m2K. However, it was clarified that even for low values of κc, the COP and Qc/S return to the original high values (obtained for κc⩾105W/m2K) at sc=0.45 and 0.90, respectively. The definite criterion of sc whether or not the boundary Seebeck coefficient has an effect on the enhancement of the cooling performance was indicated quantitatively for an STE with interface layers.

Suggested Citation

  • Yamashita, Osamu, 2011. "Effect of interface layer on the cooling performance of a single thermoelement," Applied Energy, Elsevier, vol. 88(9), pages 3022-3029.
  • Handle: RePEc:eee:appene:v:88:y:2011:i:9:p:3022-3029
    DOI: 10.1016/j.apenergy.2011.03.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261911001747
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Silva, D.J. & Bordalo, B.D. & Pereira, A.M. & Ventura, J. & Araújo, J.P., 2012. "Solid state magnetic refrigerator," Applied Energy, Elsevier, vol. 93(C), pages 570-574.
    2. He, Wei & Zhou, Jinzhi & Hou, Jingxin & Chen, Chi & Ji, Jie, 2013. "Theoretical and experimental investigation on a thermoelectric cooling and heating system driven by solar," Applied Energy, Elsevier, vol. 107(C), pages 89-97.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:88:y:2011:i:9:p:3022-3029. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.