IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v83y2006i10p1152-1162.html
   My bibliography  Save this article

Modelling low-energy cooling strategies for underground railways

Author

Listed:
  • Thompson, J.A.
  • Maidment, G.G.
  • Missenden, J.F.

Abstract

A review is presented of cooling systems used in underground railways. Current cooling methods and potential advantages of using heat storage are presented. The analytical tools available to the engineer in assessing thermal capacitance and heat storage are discussed and the possibilities for improvements in the investigation of heat loads in underground railways are examined. This paper also assesses the most appropriate methodology for modelling low-energy cooling systems, with reference to their inclusion in the complex environment of an underground railway.

Suggested Citation

  • Thompson, J.A. & Maidment, G.G. & Missenden, J.F., 2006. "Modelling low-energy cooling strategies for underground railways," Applied Energy, Elsevier, vol. 83(10), pages 1152-1162, October.
  • Handle: RePEc:eee:appene:v:83:y:2006:i:10:p:1152-1162
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(05)00166-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahn, Jonghoon & Cho, Soolyeon & Chung, Dae Hun, 2016. "Development of a statistical analysis model to benchmark the energy use intensity of subway stations," Applied Energy, Elsevier, vol. 179(C), pages 488-496.
    2. Yu, Yanzhe & You, Shijun & Zhang, Huan & Ye, Tianzhen & Wang, Yaran & Wei, Shen, 2021. "A review on available energy saving strategies for heating, ventilation and air conditioning in underground metro stations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    3. Qi Yuan & Hongqinq Zhu & Xiaolei Zhang & Baozhen Zhang & Xingkai Zhang, 2022. "An Integrated Quantitative Risk Assessment Method for Underground Engineering Fires," IJERPH, MDPI, vol. 19(24), pages 1-26, December.
    4. Yanzhe Yu & Shijun You & Shen Wei & Huan Zhang & Tianzhen Ye & Yaran Wang & Yanling Na, 2022. "Exploring the Applicability of Building Energy Performance Certification Systems in Underground Stations in China," Sustainability, MDPI, vol. 14(6), pages 1-18, March.
    5. Christian Suárez & Alfredo Iranzo & José Antonio Salva & Elvira Tapia & Gonzalo Barea & José Guerra, 2017. "Parametric Investigation Using Computational Fluid Dynamics of the HVAC Air Distribution in a Railway Vehicle for Representative Weather and Operating Conditions," Energies, MDPI, vol. 10(8), pages 1-13, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:83:y:2006:i:10:p:1152-1162. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.