IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v77y2004i2p225-234.html
   My bibliography  Save this article

Wind-induced indoor-air flow in a high-rise building adjacent to a vertical wall

Author

Listed:
  • Chow, W. K.

Abstract

Providing adequate natural ventilation would reduce the building cooling load in tropical areas. This is regarded as a design moving towards [`]green' or [`]sustainable' building. Driving forces for natural ventilation in those hot and humid countries are basically wind-induced actions. This effect depends on the surrounding environment in a dense urban area, where buildings are closely built together. For a building located next to a vertical wall or a taller building, turbulent effects due to incident wind fields would be important. In this paper, the wind-induced indoor air flow in a building adjacent to a vertical wall is studied by Computational Fluid Dynamics under different ventilation conditions. Results are useful not only for providing better ventilation, but also for working out a fire-action plan in case of accidents.

Suggested Citation

  • Chow, W. K., 2004. "Wind-induced indoor-air flow in a high-rise building adjacent to a vertical wall," Applied Energy, Elsevier, vol. 77(2), pages 225-234, February.
  • Handle: RePEc:eee:appene:v:77:y:2004:i:2:p:225-234
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(03)00121-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chow, W. K., 2001. "Numerical studies of airflows induced by mechanical ventilation and air-conditioning (MVAC) systems," Applied Energy, Elsevier, vol. 68(2), pages 135-159, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shi, W.X. & Ji, J. & Sun, J.H. & Lo, S.M. & Li, L.J. & Yuan, X.Y., 2014. "Influence of staircase ventilation state on the airflow and heat transfer of the heated room on the middle floor of high rise building," Applied Energy, Elsevier, vol. 119(C), pages 173-180.
    2. Juan, Yu-Hsuan & Wen, Chih-Yung & Li, Zhengtong & Yang, An-Shik, 2021. "Impacts of urban morphology on improving urban wind energy potential for generic high-rise building arrays," Applied Energy, Elsevier, vol. 299(C).
    3. Asfour, Omar S. & Gadi, Mohamed B., 2008. "Using CFD to investigate ventilation characteristics of vaults as wind-inducing devices in buildings," Applied Energy, Elsevier, vol. 85(12), pages 1126-1140, December.
    4. Xiaoshu Lü & Tao Lu & Tong Yang & Heidi Salonen & Zhenxue Dai & Peter Droege & Hongbing Chen, 2021. "Improving the Energy Efficiency of Buildings Based on Fluid Dynamics Models: A Critical Review," Energies, MDPI, vol. 14(17), pages 1-23, August.
    5. Wang, Yang & Zhao, Fu-Yun & Kuckelkorn, Jens & Spliethoff, Hartmut & Rank, Ernst, 2014. "School building energy performance and classroom air environment implemented with the heat recovery heat pump and displacement ventilation system," Applied Energy, Elsevier, vol. 114(C), pages 58-68.
    6. Tong, Zheming & Chen, Yujiao & Malkawi, Ali, 2016. "Defining the Influence Region in neighborhood-scale CFD simulations for natural ventilation design," Applied Energy, Elsevier, vol. 182(C), pages 625-633.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ascione, Fabrizio & Bellia, Laura & Capozzoli, Alfonso, 2013. "A coupled numerical approach on museum air conditioning: Energy and fluid-dynamic analysis," Applied Energy, Elsevier, vol. 103(C), pages 416-427.
    2. Mao, Ning & Song, Mengjie & Deng, Shiming, 2016. "Application of TOPSIS method in evaluating the effects of supply vane angle of a task/ambient air conditioning system on energy utilization and thermal comfort," Applied Energy, Elsevier, vol. 180(C), pages 536-545.
    3. Chow, W. K., 2002. "Ventilation of enclosed train compartments in Hong Kong," Applied Energy, Elsevier, vol. 71(3), pages 161-170, March.
    4. Teng-Yi Wang & Kuang-Chung Tsai, 2021. "Effects of Time to Unactuate Air Conditioning on Fire Growth," Energies, MDPI, vol. 14(11), pages 1-15, May.
    5. Sala, J.M. & González, L.M. López & Míguez, J.L. & Eguía, J.J. & Vicuña, J.E. & Juárez, M.C. & Doménech, J., 2005. "Improvement of a chain-hardening furnace by computational fluid dynamics (CFD) simulation," Applied Energy, Elsevier, vol. 81(3), pages 260-276, July.
    6. Bruno, Roberto & Bevilacqua, Piero & Cuconati, Teresa & Arcuri, Natale, 2019. "Energy evaluations of an innovative multi-storey wooden near Zero Energy Building designed for Mediterranean areas," Applied Energy, Elsevier, vol. 238(C), pages 929-941.
    7. Sala, J.M. & López-González, L.M. & Ruiz de Adana, M. & Eguía, J. & Flores, I. & Míguez, J.L., 2006. "Optimising ventilation-system design for a container-housed engine," Applied Energy, Elsevier, vol. 83(10), pages 1125-1138, October.
    8. Shi, W.X. & Ji, J. & Sun, J.H. & Lo, S.M. & Li, L.J. & Yuan, X.Y., 2014. "Influence of staircase ventilation state on the airflow and heat transfer of the heated room on the middle floor of high rise building," Applied Energy, Elsevier, vol. 119(C), pages 173-180.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:77:y:2004:i:2:p:225-234. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.