IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v387y2025ics0306261925003356.html
   My bibliography  Save this article

Traffic scenario frozen callback and adaptive neuro-fuzzy inference system based energy management strategy for connected fuel cell buses

Author

Listed:
  • Li, Menglin
  • Liu, Haoran
  • Yan, Mei
  • Guo, Boyu
  • Wu, Jingda
  • Jiang, Guokai
  • Fu, Xupeng

Abstract

Exploring the full potential of energy savings for new energy vehicles in a future connected transportation system is a challenging task. To address how connected buses can leverage surrounding traffic information to improve their energy efficiency, an intelligent fuel cell bus energy management method based on traffic scenario frozen callback is proposed, which enables high real-time performance in online energy management. To tackle the issue of inconsistent data dimensions caused by random fluctuations in the number of vehicles in a fixed traffic flow, a traffic flow representation based on grid grayscale images is designed. Building upon this representation, a speed trajectory prediction model based on traffic scenario frozen callback is developed. Subsequently, offline historical global optimal data are used to construct a training dataset that links speed trajectories to optimal control sequences. An end-to-end energy management framework based on the adaptive neuro-fuzzy inference system (ANFIS) is presented and validated in scenarios that before entering bus station and after exiting bus station. Simulation results demonstrate that, the proposed energy management strategy (EMS) approaches the overall energy consumption of dynamic programming (DP), reaching 97.76 % and 98.82 % in the two kinds of scenarios of its performance, outperforms the other two comparative EMSs. In terms of timeliness, the computational time spent by the proposed EMS is only 0.2076 times and 0.1952 times that of traditional model predictive control (MPC)-based EMS in the separate scenario.

Suggested Citation

  • Li, Menglin & Liu, Haoran & Yan, Mei & Guo, Boyu & Wu, Jingda & Jiang, Guokai & Fu, Xupeng, 2025. "Traffic scenario frozen callback and adaptive neuro-fuzzy inference system based energy management strategy for connected fuel cell buses," Applied Energy, Elsevier, vol. 387(C).
  • Handle: RePEc:eee:appene:v:387:y:2025:i:c:s0306261925003356
    DOI: 10.1016/j.apenergy.2025.125605
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925003356
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125605?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sulaiman, N. & Hannan, M.A. & Mohamed, A. & Majlan, E.H. & Wan Daud, W.R., 2015. "A review on energy management system for fuel cell hybrid electric vehicle: Issues and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 802-814.
    2. Tian, He & Li, Shengbo Eben & Wang, Xu & Huang, Yong & Tian, Guangyu, 2018. "Data-driven hierarchical control for online energy management of plug-in hybrid electric city bus," Energy, Elsevier, vol. 142(C), pages 55-67.
    3. Liu, Teng & Tan, Wenhao & Tang, Xiaolin & Zhang, Jinwei & Xing, Yang & Cao, Dongpu, 2021. "Driving conditions-driven energy management strategies for hybrid electric vehicles: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    4. Yang, Chao & Du, Siyu & Li, Liang & You, Sixong & Yang, Yiyong & Zhao, Yue, 2017. "Adaptive real-time optimal energy management strategy based on equivalent factors optimization for plug-in hybrid electric vehicle," Applied Energy, Elsevier, vol. 203(C), pages 883-896.
    5. Wu, Yuankai & Tan, Huachun & Peng, Jiankun & Zhang, Hailong & He, Hongwen, 2019. "Deep reinforcement learning of energy management with continuous control strategy and traffic information for a series-parallel plug-in hybrid electric bus," Applied Energy, Elsevier, vol. 247(C), pages 454-466.
    6. Peng, Jiankun & He, Hongwen & Xiong, Rui, 2017. "Rule based energy management strategy for a series–parallel plug-in hybrid electric bus optimized by dynamic programming," Applied Energy, Elsevier, vol. 185(P2), pages 1633-1643.
    7. Yanwei Liu & Jiansheng Liang & Jiaqing Song & Jie Ye, 2022. "Research on Energy Management Strategy of Fuel Cell Vehicle Based on Multi-Dimensional Dynamic Programming," Energies, MDPI, vol. 15(14), pages 1-20, July.
    8. Xu, Bin & Wang, Hanchen, 2023. "A comparative analysis of adaptive energy management for a hybrid electric vehicle via five driving condition recognition methods," Energy, Elsevier, vol. 269(C).
    9. V. Mounica & Y. P. Obulesu, 2022. "Hybrid Power Management Strategy with Fuel Cell, Battery, and Supercapacitor for Fuel Economy in Hybrid Electric Vehicle Application," Energies, MDPI, vol. 15(12), pages 1-25, June.
    10. Ganesh, Akhil Hannegudda & Xu, Bin, 2022. "A review of reinforcement learning based energy management systems for electrified powertrains: Progress, challenge, and potential solution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    11. He, Hongwen & Meng, Xiangfei & Wang, Yong & Khajepour, Amir & An, Xiaowen & Wang, Renguang & Sun, Fengchun, 2024. "Deep reinforcement learning based energy management strategies for electrified vehicles: Recent advances and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    12. Wang, Yujie & Sun, Zhendong & Chen, Zonghai, 2019. "Development of energy management system based on a rule-based power distribution strategy for hybrid power sources," Energy, Elsevier, vol. 175(C), pages 1055-1066.
    13. Ioan-Sorin Sorlei & Nicu Bizon & Phatiphat Thounthong & Mihai Varlam & Elena Carcadea & Mihai Culcer & Mariana Iliescu & Mircea Raceanu, 2021. "Fuel Cell Electric Vehicles—A Brief Review of Current Topologies and Energy Management Strategies," Energies, MDPI, vol. 14(1), pages 1-29, January.
    14. Menglin Li & Haoran Liu & Mei Yan & Hongyang Xu & Hongwen He, 2022. "A Novel Multi-Objective Energy Management Strategy for Fuel Cell Buses Quantifying Fuel Cell Degradation as Operating Cost," Sustainability, MDPI, vol. 14(23), pages 1-16, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Hao & Lei, Nuo & Chen, Boli & Li, Bingbing & Li, Rulong & Wang, Zhi, 2024. "Modeling and control system optimization for electrified vehicles: A data-driven approach," Energy, Elsevier, vol. 310(C).
    2. Dong, Peng & Zhao, Junwei & Liu, Xuewu & Wu, Jian & Xu, Xiangyang & Liu, Yanfang & Wang, Shuhan & Guo, Wei, 2022. "Practical application of energy management strategy for hybrid electric vehicles based on intelligent and connected technologies: Development stages, challenges, and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    3. Hu, Dong & Xie, Hui & Song, Kang & Zhang, Yuanyuan & Yan, Long, 2023. "An apprenticeship-reinforcement learning scheme based on expert demonstrations for energy management strategy of hybrid electric vehicles," Applied Energy, Elsevier, vol. 342(C).
    4. Huang, Ying & Wang, Shilong & Li, Ke & Fan, Zhuwei & Xie, Haiming & Jiang, Fachao, 2023. "Multi-parameter adaptive online energy management strategy for concrete truck mixers with a novel hybrid powertrain considering vehicle mass," Energy, Elsevier, vol. 277(C).
    5. Zhang, Yahui & Wang, Zimeng & Tian, Yang & Wang, Zhong & Kang, Mingxin & Xie, Fangxi & Wen, Guilin, 2024. "Pre-optimization-assisted deep reinforcement learning-based energy management strategy for a series–parallel hybrid electric truck," Energy, Elsevier, vol. 302(C).
    6. Álvaro Gómez-Barroso & Iban Vicente Makazaga & Ekaitz Zulueta, 2024. "Optimizing Hybrid Electric Vehicle Performance: A Detailed Overview of Energy Management Strategies," Energies, MDPI, vol. 18(1), pages 1-32, December.
    7. Chen, Zheng & Gu, Hongji & Shen, Shiquan & Shen, Jiangwei, 2022. "Energy management strategy for power-split plug-in hybrid electric vehicle based on MPC and double Q-learning," Energy, Elsevier, vol. 245(C).
    8. Changqing Du & Shiyang Huang & Yuyao Jiang & Dongmei Wu & Yang Li, 2022. "Optimization of Energy Management Strategy for Fuel Cell Hybrid Electric Vehicles Based on Dynamic Programming," Energies, MDPI, vol. 15(12), pages 1-25, June.
    9. Zhang, Hao & Fan, Qinhao & Liu, Shang & Li, Shengbo Eben & Huang, Jin & Wang, Zhi, 2021. "Hierarchical energy management strategy for plug-in hybrid electric powertrain integrated with dual-mode combustion engine," Applied Energy, Elsevier, vol. 304(C).
    10. Li, Menglin & Yin, Long & Yan, Mei & Wu, Jingda & He, Hongwe & Jia, Chunchun, 2024. "Hierarchical intelligent energy-saving control strategy for fuel cell hybrid electric buses based on traffic flow predictions," Energy, Elsevier, vol. 304(C).
    11. Enyong Xu & Mengcheng Ma & Weiguang Zheng & Qibai Huang, 2023. "An Energy Management Strategy for Fuel-Cell Hybrid Commercial Vehicles Based on Adaptive Model Prediction," Sustainability, MDPI, vol. 15(10), pages 1-20, May.
    12. Yang, Chao & Liu, Kaijia & Jiao, Xiaohong & Wang, Weida & Chen, Ruihu & You, Sixiong, 2022. "An adaptive firework algorithm optimization-based intelligent energy management strategy for plug-in hybrid electric vehicles," Energy, Elsevier, vol. 239(PB).
    13. Shi, Man & He, Hongwen & Li, Jianwei & Han, Mo & Jia, Chunchun, 2021. "Multi-objective tradeoff optimization of predictive adaptive cruising control for autonomous electric buses: A cyber-physical-energy system approach," Applied Energy, Elsevier, vol. 300(C).
    14. Feng, Zhiyan & Zhang, Qingang & Zhang, Yiming & Fei, Liangyu & Jiang, Fei & Zhao, Shengdun, 2024. "Practicability analysis of online deep reinforcement learning towards energy management strategy of 4WD-BEVs driven by dual-motor in-wheel motors," Energy, Elsevier, vol. 290(C).
    15. Geng, Wenran & Lou, Diming & Wang, Chen & Zhang, Tong, 2020. "A cascaded energy management optimization method of multimode power-split hybrid electric vehicles," Energy, Elsevier, vol. 199(C).
    16. Lei, Zhenzhen & Qin, Datong & Hou, Liliang & Peng, Jingyu & Liu, Yonggang & Chen, Zheng, 2020. "An adaptive equivalent consumption minimization strategy for plug-in hybrid electric vehicles based on traffic information," Energy, Elsevier, vol. 190(C).
    17. Li, Jianwei & Liu, Jie & Yang, Qingqing & Wang, Tianci & He, Hongwen & Wang, Hanxiao & Sun, Fengchun, 2025. "Reinforcement learning based energy management for fuel cell hybrid electric vehicles: A comprehensive review on decision process reformulation and strategy implementation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 213(C).
    18. Matteo Acquarone & Claudio Maino & Daniela Misul & Ezio Spessa & Antonio Mastropietro & Luca Sorrentino & Enrico Busto, 2023. "Influence of the Reward Function on the Selection of Reinforcement Learning Agents for Hybrid Electric Vehicles Real-Time Control," Energies, MDPI, vol. 16(6), pages 1-22, March.
    19. Togun, Hussein & Basem, Ali & Abdulrazzaq, Tuqa & Biswas, Nirmalendu & Abed, Azher M. & dhabab, Jameel M. & Chattopadhyay, Anirban & Slimi, Khalifa & Paul, Dipankar & Barmavatu, Praveen & Chrouda, Ama, 2025. "Development and comparative analysis between battery electric vehicles (BEV) and fuel cell electric vehicles (FCEV)," Applied Energy, Elsevier, vol. 388(C).
    20. Du, Guodong & Zou, Yuan & Zhang, Xudong & Kong, Zehui & Wu, Jinlong & He, Dingbo, 2019. "Intelligent energy management for hybrid electric tracked vehicles using online reinforcement learning," Applied Energy, Elsevier, vol. 251(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:387:y:2025:i:c:s0306261925003356. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.