Computationally efficient data synthesis for AC-OPF: Integrating Physics-Informed Neural Network solvers and active learning
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2024.124714
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Ngo, Quang-Ha & Nguyen, Bang L.H. & Vu, Tuyen V. & Zhang, Jianhua & Ngo, Tuan, 2024. "Physics-informed graphical neural network for power system state estimation," Applied Energy, Elsevier, vol. 358(C).
- Liu, Jiantao & Wang, Lei & Jiao, Ticao & Yang, Wenjing & Xu, Ruilong & Wu, Ke & Ha, Hengxu, 2024. "Multi-period voltage stability-constrained optimal power flow with uncertainties," Applied Energy, Elsevier, vol. 369(C).
- Wang, Endong, 2017. "Decomposing core energy factor structure of U.S. residential buildings through principal component analysis with variable clustering on high-dimensional mixed data," Applied Energy, Elsevier, vol. 203(C), pages 858-873.
- Todic, Tamara & Stankovic, Vladimir & Stankovic, Lina, 2023. "An active learning framework for the low-frequency Non-Intrusive Load Monitoring problem," Applied Energy, Elsevier, vol. 341(C).
- Alencar, Marina Valença & da Silva, Diego Nunes & Nepomuceno, Leonardo & Martins, André Christóvão Pio & Balbo, Antonio Roberto & Soler, Edilaine Martins, 2024. "Discrete optimal power flow with prohibited zones, multiple-fuel options, and practical operational rules for control devices," Applied Energy, Elsevier, vol. 358(C).
- Hu, Guoqing & You, Fengqi, 2023. "An AI framework integrating physics-informed neural network with predictive control for energy-efficient food production in the built environment," Applied Energy, Elsevier, vol. 348(C).
- Zhang, Rufeng & Chen, Yan & Li, Zhengmao & Jiang, Tao & Li, Xue, 2024. "Two-stage robust operation of electricity-gas-heat integrated multi-energy microgrids considering heterogeneous uncertainties," Applied Energy, Elsevier, vol. 371(C).
- Wen, Shuqing & Zhang, Weirong & Sun, Yifu & Li, Zhenxi & Huang, Boju & Bian, Shouguo & Zhao, Lin & Wang, Yan, 2023. "An enhanced principal component analysis method with Savitzky–Golay filter and clustering algorithm for sensor fault detection and diagnosis," Applied Energy, Elsevier, vol. 337(C).
- Hua, Haochen & Du, Can & Chen, Xingying & Kong, Hui & Li, Kang & Liu, Zhao & Naidoo, Pathmanathan & Lv, Mian & Hu, Nan & Fu, Ming & Li, Bing, 2024. "Optimal dispatch of multiple interconnected-integrated energy systems considering multi-energy interaction and aggregated demand response for multiple stakeholders," Applied Energy, Elsevier, vol. 376(PA).
- Tian, Runze & Kou, Peng & Zhang, Yuanhang & Mei, Mingyang & Zhang, Zhihao & Liang, Deliang, 2024. "Residual-connected physics-informed neural network for anti-noise wind field reconstruction," Applied Energy, Elsevier, vol. 357(C).
- Li, Chen & Kies, Alexander & Zhou, Kai & Schlott, Markus & Sayed, Omar El & Bilousova, Mariia & Stöcker, Horst, 2024. "Optimal Power Flow in a highly renewable power system based on attention neural networks," Applied Energy, Elsevier, vol. 359(C).
- Fan, Cheng & Wu, Qiuting & Zhao, Yang & Mo, Like, 2024. "Integrating active learning and semi-supervised learning for improved data-driven HVAC fault diagnosis performance," Applied Energy, Elsevier, vol. 356(C).
- Shang, Yitong & Li, Sen, 2024. "FedPT-V2G: Security enhanced federated transformer learning for real-time V2G dispatch with non-IID data," Applied Energy, Elsevier, vol. 358(C).
- Khanali, Majid & Akram, Asadollah & Behzadi, Javad & Mostashari-Rad, Fatemeh & Saber, Zahra & Chau, Kwok-wing & Nabavi-Pelesaraei, Ashkan, 2021. "Multi-objective optimization of energy use and environmental emissions for walnut production using imperialist competitive algorithm," Applied Energy, Elsevier, vol. 284(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yongjie Yang & Yulong Li & Yan Cai & Hui Tang & Peng Xu, 2024. "Data-Driven Golden Jackal Optimization–Long Short-Term Memory Short-Term Energy-Consumption Prediction and Optimization System," Energies, MDPI, vol. 17(15), pages 1-20, July.
- Yin, Linfei & Wang, Nannan & Li, Jishen, 2025. "Electricity terminal multi-label recognition with a “one-versus-all” rejection recognition algorithm based on adaptive distillation increment learning and attention MobileNetV2 network for non-invasiv," Applied Energy, Elsevier, vol. 382(C).
- Afshin Tatar & Amin Shokrollahi & Abbas Zeinijahromi & Manouchehr Haghighi, 2024. "Deep Learning for Predicting Hydrogen Solubility in n-Alkanes: Enhancing Sustainable Energy Systems," Sustainability, MDPI, vol. 16(17), pages 1-24, August.
- Wang, Hanxuan & Lu, Na & Liu, Yinhong & Wang, Zhuqing & Wang, Zixuan, 2025. "A multi-module robust method for transient stability assessment against false label injection cyberattacks," Applied Energy, Elsevier, vol. 389(C).
- Yin, Sihua & Yang, Haidong & Xu, Kangkang & Zhu, Chengjiu & Zhang, Shaqing & Liu, Guosheng, 2022. "Dynamic real–time abnormal energy consumption detection and energy efficiency optimization analysis considering uncertainty," Applied Energy, Elsevier, vol. 307(C).
- Nabavi-Pelesaraei, Ashkan & Azadi, Hossein & Van Passel, Steven & Saber, Zahra & Hosseini-Fashami, Fatemeh & Mostashari-Rad, Fatemeh & Ghasemi-Mobtaker, Hassan, 2021. "Prospects of solar systems in production chain of sunflower oil using cold press method with concentrating energy and life cycle assessment," Energy, Elsevier, vol. 223(C).
- Fabio Massaro & Maria Luisa Di Silvestre & Marco Ferraro & Francesco Montana & Eleonora Riva Sanseverino & Salvatore Ruffino, 2024. "Energy Hub Model for the Massive Adoption of Hydrogen in Power Systems," Energies, MDPI, vol. 17(17), pages 1-31, September.
- Chen, Dongyu & Lin, Xiaojie & Qiao, Yiyuan, 2025. "Perspectives for artificial intelligence in sustainable energy systems," Energy, Elsevier, vol. 318(C).
- Hu, Guoqing & You, Fengqi, 2024. "AI-enabled cyber-physical-biological systems for smart energy management and sustainable food production in a plant factory," Applied Energy, Elsevier, vol. 356(C).
- Liangcai Zhou & Long Huo & Linlin Liu & Hao Xu & Rui Chen & Xin Chen, 2025. "Optimal Power Flow for High Spatial and Temporal Resolution Power Systems with High Renewable Energy Penetration Using Multi-Agent Deep Reinforcement Learning," Energies, MDPI, vol. 18(7), pages 1-14, April.
- Dorokhov, V.V. & Kuznetsov, G.V. & Vershinina, K.Yu. & Strizhak, P.A., 2021. "Relative energy efficiency indicators calculated for high-moisture waste-based fuel blends using multiple-criteria decision-making," Energy, Elsevier, vol. 234(C).
- Bo Li & Jing Liu & Qian Liu & Muhammad Mohiuddin, 2022. "The Effects of Broadband Infrastructure on Carbon Emission Efficiency of Resource-Based Cities in China: A Quasi-Natural Experiment from the “Broadband China” Pilot Policy," IJERPH, MDPI, vol. 19(11), pages 1-27, May.
- Beata Kurc & Xymena Gross & Natalia Szymlet & Łukasz Rymaniak & Krystian Woźniak & Marita Pigłowska, 2024. "Hydrogen-Powered Vehicles: A Paradigm Shift in Sustainable Transportation," Energies, MDPI, vol. 17(19), pages 1-38, September.
- Nawin Raj, 2022. "Prediction of Sea Level with Vertical Land Movement Correction Using Deep Learning," Mathematics, MDPI, vol. 10(23), pages 1-23, November.
- Ni, Wenchi & Tian, Gengqing & Xie, Guangci & Ma, Yong, 2024. "Power prediction of oscillating water column power generation device based on physical information embedded neural network," Energy, Elsevier, vol. 306(C).
- Pantua, Conrad Allan Jay & Calautit, John Kaiser & Wu, Yupeng, 2021. "Sustainability and structural resilience of building integrated photovoltaics subjected to typhoon strength winds," Applied Energy, Elsevier, vol. 301(C).
- Antunes, Jorge Junio Moreira & Neves, Juliana Campos & Elmor, Larissa Rosa Carneiro & Araujo, Michel Fontaine Reis De & Wanke, Peter Fernandes & Tan, Yong, 2023. "A new perspective on the U.S. energy efficiency: The political context," Technological Forecasting and Social Change, Elsevier, vol. 186(PA).
- Simona Di Fraia & Rafał Figaj & Musannif Shah & Laura Vanoli, 2024. "Biomass-Driven Polygeneration Coupled to Power-to-X: An Energy and Economic Comparison Between On-Site Electric Vehicle Charging and Hydrogen Production," Energies, MDPI, vol. 17(21), pages 1-24, November.
- Chen, Jianguo & Han, Xuebing & Sun, Tao & Zheng, Yuejiu, 2024. "Analysis and prediction of battery aging modes based on transfer learning," Applied Energy, Elsevier, vol. 356(C).
- Nitin Kumar Singh & Masaaki Nagahara, 2024. "LightGBM-, SHAP-, and Correlation-Matrix-Heatmap-Based Approaches for Analyzing Household Energy Data: Towards Electricity Self-Sufficient Houses," Energies, MDPI, vol. 17(17), pages 1-32, September.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:378:y:2025:i:pa:s030626192402097x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.