IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v289y2021ics0306261921002282.html
   My bibliography  Save this article

Multistage radial flow pump - turbine for compressed air energy storage: experimental analysis and modeling

Author

Listed:
  • Ortego Sampedro, Egoi
  • Dazin, Antoine
  • Colas, Frédéric
  • Roussette, Olivier
  • Coutier-Delgosha, Olivier
  • Caignaert, Guy

Abstract

The increasing development of storage systems connected to electrical networks is stimulated by network management issues related to recent energetic landscape evolutions such as the increasing integration of renewable production sources. Hydro-pneumatic systems seem to offer a clean and cheap energy storage solution among the set of existing storage techniques. The present study analyses an air–water direct contact accumulation system, in closed cycle, using a rotodynamic reversible pump/turbine. The use of a unique energy conversion machine and easy-to-recycle materials could lead to cost-effective, environmentally friendly storage technique with long service life. The paper is focused on the experimental implementation and analysis of the system in a Lab environment, and the modeling of its multi-physic dynamic behavior. To deal with the variable operating conditions of the system, two different real time control strategies of the hydraulic machine were successfully tested. Finally, the global system efficiency is discussed. The efficiency control strategy was achieved with a 31% round trip efficiency and the power control strategy lead to 5% and 23% precision on exchanged power in charge and discharge modes respectively. The multi-physic dynamic model led to a 4% error of turbine mode acceleration prediction showing the interest of such a modeling method for such transient systems.

Suggested Citation

  • Ortego Sampedro, Egoi & Dazin, Antoine & Colas, Frédéric & Roussette, Olivier & Coutier-Delgosha, Olivier & Caignaert, Guy, 2021. "Multistage radial flow pump - turbine for compressed air energy storage: experimental analysis and modeling," Applied Energy, Elsevier, vol. 289(C).
  • Handle: RePEc:eee:appene:v:289:y:2021:i:c:s0306261921002282
    DOI: 10.1016/j.apenergy.2021.116705
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921002282
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.116705?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Yufei & Li, Ruixiong & Shao, Huaishuang & He, Xin & Zhang, Wenlong & Du, Junyu & Song, Yaoguang & Wang, Huanran, 2024. "Thermodynamic and economic analysis of a novel thermoelectric-hydrogen co-generation system combining compressed air energy storage and chemical energy," Energy, Elsevier, vol. 286(C).
    2. Yong Liu & Dezhong Wang & Hongjuan Ran & Rui Xu & Yu Song & Bo Gong, 2021. "RANS CFD Analysis of Hump Formation Mechanism in Double-Suction Centrifugal Pump under Part Load Condition," Energies, MDPI, vol. 14(20), pages 1-17, October.
    3. Chen, Hao & Wang, Huanran & Li, Ruixiong & Sun, Hao & Ge, Gangqiang & Ling, Lanning, 2022. "Experimental and analytical investigation of near-isothermal pumped hydro-compressed air energy storage system," Energy, Elsevier, vol. 249(C).
    4. Lan, Xinyao & Jin, Jiahui & Xu, Beibei & Chen, Diyi & Egusquiza, Mònica & Kim, Jin-Hyuk & Egusquiza, Eduard & Jafar, Nejadali & Xu, Lin & Kuang, Yuan, 2022. "Physical model test and parametric optimization of a hydroelectric generating system with a coaxial shaft surge tank," Renewable Energy, Elsevier, vol. 200(C), pages 880-899.
    5. Li, Chengchen & Wang, Huanran & He, Xin & Zhang, Yan, 2022. "Experimental and thermodynamic investigation on isothermal performance of large-scaled liquid piston," Energy, Elsevier, vol. 249(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:289:y:2021:i:c:s0306261921002282. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.