IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v208y2017icp332-343.html
   My bibliography  Save this article

Experimental investigation of two-stage thermoelectric generator system integrated with phase change materials

Author

Listed:
  • Ahmadi Atouei, Saeed
  • Ranjbar, Ali Akbar
  • Rezania, Alireza

Abstract

Due to limitations in performance of thermoelectric materials, applying two-stage thermoelectric generator (TTEG) has been proposed to improve the performance of thermoelectric generator (TEG) system. In this paper, a novel prototype of a two-stage thermoelectric generator system is investigated experimentally. In the first stage, a TEG module installed between a phase change material (PCM) heat sink, as cooling system, and an electrical heater, as the heat source. Because of the inherent characteristics of PCMs to save the thermal energy as latent heat, the PCM heat sink is used as the heat source of the second stage TEGs. In the second stage, five smaller TEG modules are installed around the PCM with individual heat sinks for cooling with natural convection. In order to have a comparison between a common TEG system and the proposed two-stage TEG system, a one-stage thermoelectric generator with forced air cooling system has been tested. The results show the proposed TTEG system averagely generates 27% more electrical potential than the one-stage TEG system. Moreover, when the heater is off, the TTEG supplies 0.377 V open circuit voltage in average for about 7900 s, while the one-stage TEG generates this amount of voltage just for 2100 s. Therefore, the proposed design makes TEG systems more suitable for wireless sensor applications when the heat source does not provide steady thermal energy. In this study, four different patterns of thermal power applied to the TTEG system are considered. These patterns are used to simulate various transient thermal boundary conditions imposed to the system.

Suggested Citation

  • Ahmadi Atouei, Saeed & Ranjbar, Ali Akbar & Rezania, Alireza, 2017. "Experimental investigation of two-stage thermoelectric generator system integrated with phase change materials," Applied Energy, Elsevier, vol. 208(C), pages 332-343.
  • Handle: RePEc:eee:appene:v:208:y:2017:i:c:p:332-343
    DOI: 10.1016/j.apenergy.2017.10.032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917314411
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.10.032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alghamdi, Hisham & Maduabuchi, Chika & Okoli, Kingsley & Albaker, Abdullah & Makki, Emad & Alghassab, Mohammed & Alobaid, Mohammad & Alkhedher, Mohammad, 2023. "Pioneering sustainable power: Harnessing material innovations in double stage segmented thermoelectric generators for optimal 4E performance," Applied Energy, Elsevier, vol. 352(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:208:y:2017:i:c:p:332-343. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.