IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v178y2016icp609-615.html
   My bibliography  Save this article

Hydrogen sulfide reformation in the presence of methane

Author

Listed:
  • El-Melih, A.M.
  • Al Shoaibi, A.
  • Gupta, A.K.

Abstract

This paper provides experimental investigation on the potential of hydrogen production from hydrogen sulfide and methane mixtures in nitrogen. The reformation of H2S in natural gas represents a viable alternative option for the treatment of acid gases extracted from gas wells that contains H2S, CH4 and N2 in the gases without their separation, using for example, the amine process to remove H2S. A laboratory-scale quartz reactor was used to investigate experimentally the effect of temperature and inlet stream composition on the production of hydrogen from a mixture of hydrogen sulfide and methane diluted in nitrogen. The results reveal the important role of reactor temperature on the decomposition of both hydrogen sulfide and methane as well as the production of hydrogen. The results also showed that the production of hydrogen increased dramatically at temperatures exceeding 1473K wherein the conversion of hydrogen sulfide is more significant. The methane was consumed at temperatures above 1373K. The conversion of hydrogen sulfide in presence of methane was higher than that in case of hydrogen sulfide only. The carbon disulfide formed during the reformation process increased with increase in temperature. These results provide favorable reactor operational conditions for the reformation of methane with hydrogen sulfide. These results also provide a viable alternative option for the treatment of various waste streams containing hydrogen sulfide to produce clean hydrogen and sulfur.

Suggested Citation

  • El-Melih, A.M. & Al Shoaibi, A. & Gupta, A.K., 2016. "Hydrogen sulfide reformation in the presence of methane," Applied Energy, Elsevier, vol. 178(C), pages 609-615.
  • Handle: RePEc:eee:appene:v:178:y:2016:i:c:p:609-615
    DOI: 10.1016/j.apenergy.2016.06.053
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916308297
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.06.053?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Selim, H. & Gupta, A.K. & Al Shoaibi, A., 2012. "Effect of CO2 and N2 concentration in acid gas stream on H2S combustion," Applied Energy, Elsevier, vol. 98(C), pages 53-58.
    2. Selim, H. & Al Shoaibi, A. & Gupta, A.K., 2011. "Effect of H2S in methane/air flames on sulfur chemistry and products speciation," Applied Energy, Elsevier, vol. 88(8), pages 2593-2600, August.
    3. Selim, H. & Ibrahim, S. & Al Shoaibi, A. & Gupta, A.K., 2013. "Effect of oxygen enrichment on acid gas combustion in hydrogen/air flames under claus conditions," Applied Energy, Elsevier, vol. 109(C), pages 119-124.
    4. Selim, H. & Ibrahim, S. & Al Shoaibi, A. & Gupta, A.K., 2014. "Investigation of sulfur chemistry with acid gas addition in hydrogen/air flames," Applied Energy, Elsevier, vol. 113(C), pages 1134-1140.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. El-Melih, A.M. & Al Shoaibi, A. & Gupta, A.K., 2017. "Reformation of hydrogen sulfide to hydrogen in the presence of xylene," Applied Energy, Elsevier, vol. 203(C), pages 403-411.
    2. Wu, Angjian & Li, Xiaodong & Yan, Jianhua & Yang, Jian & Du, Changming & Zhu, Fengsen & Qian, Jinyuan, 2017. "Co-generation of hydrogen and carbon aerosol from coalbed methane surrogate using rotating gliding arc plasma," Applied Energy, Elsevier, vol. 195(C), pages 67-79.
    3. Elvira Spatolisano & Federica Restelli & Laura A. Pellegrini & Alberto R. de Angelis, 2024. "Waste to H 2 Sustainable Processes: A Review on H 2 S Valorization Technologies," Energies, MDPI, vol. 17(3), pages 1-37, January.
    4. Ipsakis, Dimitris & Kraia, Tzouliana & Konsolakis, Michalis & Marnellos, George, 2018. "Remediation of Black Sea ecosystem and pure H2 generation via H2S-H2O co-electrolysis in a proton-conducting membrane cell stack reactor: A feasibility study of the integrated and autonomous approach," Renewable Energy, Elsevier, vol. 125(C), pages 806-818.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ibrahim, S. & Al Shoaibi, A. & Gupta, A.K., 2014. "Toluene destruction in thermal stage of Claus reactor with oxygen enriched air," Applied Energy, Elsevier, vol. 115(C), pages 1-8.
    2. Li, Yang & Yu, Xinlei & Li, Hongjun & Guo, Qinghua & Dai, Zhenghua & Yu, Guangsuo & Wang, Fuchen, 2017. "Detailed kinetic modelling of H2S oxidation with presence of CO2 under rich condition," Applied Energy, Elsevier, vol. 190(C), pages 824-834.
    3. Li, Yang & Guo, Qinghua & Yu, Xinlei & Dai, Zhenghua & Wang, Yifei & Yu, Guangsuo & Wang, Fuchen, 2017. "Effect of O2 enrichment on acid gas oxidation and formation of COS and CS2 in a rich diffusion flame," Applied Energy, Elsevier, vol. 206(C), pages 947-958.
    4. Ibrahim, S. & Gupta, A.K. & Al Shoaibi, A., 2015. "Xylene and H2S destruction in high temperature flames under Claus condition," Applied Energy, Elsevier, vol. 154(C), pages 352-360.
    5. Ibrahim, S. & Al Shoaibi, A. & Gupta, A.K., 2015. "Role of toluene to acid gas (H2S and CO2) combustion in H2/O2–N2 flame under Claus condition," Applied Energy, Elsevier, vol. 149(C), pages 62-68.
    6. El-Melih, A.M. & Al Shoaibi, A. & Gupta, A.K., 2017. "Reformation of hydrogen sulfide to hydrogen in the presence of xylene," Applied Energy, Elsevier, vol. 203(C), pages 403-411.
    7. Davazdah Emami, Sina & Kasmani, Rafiziana Md. & Hamid, Mahar Diana & Che Hassan, Che Rosmani & Mokhtar, Khairiah Mohd, 2016. "Kinetic and dynamic analysis of hydrogen-enrichment mixtures in combustor systems – A review paper," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1072-1082.
    8. Selim, H. & Ibrahim, S. & Al Shoaibi, A. & Gupta, A.K., 2014. "Investigation of sulfur chemistry with acid gas addition in hydrogen/air flames," Applied Energy, Elsevier, vol. 113(C), pages 1134-1140.
    9. Ibrahim, S. & Al Shoaibi, A. & Gupta, A.K., 2013. "Role of toluene in hydrogen sulfide combustion under Claus condition," Applied Energy, Elsevier, vol. 112(C), pages 60-66.
    10. Ibrahim, S. & Al Shoaibi, A. & Gupta, A.K., 2015. "Effect of benzene on product evolution in a H2S/O2 flame under Claus condition," Applied Energy, Elsevier, vol. 145(C), pages 21-26.
    11. Selim, H. & Ibrahim, S. & Al Shoaibi, A. & Gupta, A.K., 2013. "Effect of oxygen enrichment on acid gas combustion in hydrogen/air flames under claus conditions," Applied Energy, Elsevier, vol. 109(C), pages 119-124.
    12. Selim, H. & Gupta, A.K. & Al Shoaibi, A., 2013. "Effect of reaction parameters on the quality of captured sulfur in Claus process," Applied Energy, Elsevier, vol. 104(C), pages 772-776.
    13. Bassani, Andrea & Pirola, Carlo & Maggio, Enrico & Pettinau, Alberto & Frau, Caterina & Bozzano, Giulia & Pierucci, Sauro & Ranzi, Eliseo & Manenti, Flavio, 2016. "Acid Gas to Syngas (AG2S™) technology applied to solid fuel gasification: Cutting H2S and CO2 emissions by improving syngas production," Applied Energy, Elsevier, vol. 184(C), pages 1284-1291.
    14. El-Melih, A.M. & Ibrahim, S. & Gupta, A.K. & Al Shoaibi, A., 2016. "Experimental examination of syngas recovery from acid gases," Applied Energy, Elsevier, vol. 164(C), pages 64-68.
    15. Selim, H. & Al Shoaibi, A. & Gupta, A.K., 2011. "Experimental examination of flame chemistry in hydrogen sulfide-based flames," Applied Energy, Elsevier, vol. 88(8), pages 2601-2611, August.
    16. Selim, H. & Gupta, A.K. & Al Shoaibi, A., 2012. "Effect of CO2 and N2 concentration in acid gas stream on H2S combustion," Applied Energy, Elsevier, vol. 98(C), pages 53-58.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:178:y:2016:i:c:p:609-615. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.