IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v500y2025ics0096300325001304.html
   My bibliography  Save this article

An evolutionary game-based vicsek model with a fixed number of neighbors

Author

Listed:
  • Zhao, Hui
  • Zhang, Zhenyu
  • Tchappi, Igor
  • Li, Li

Abstract

In the face of collective motion, people often face a binary decision: they may interact with others and pay for communication, or they can choose to go alone and forgo these costs. Evolutionary game theory (EGT) emerges in this setting as a crucial paradigm to address this complex issue. In this study, an EGT-based Vicsek with a fixed number of neighbors is proposed. It assumed that the agent had a limited view and just considered a certain number of neighbors. Agents exhibit varying movement patterns depending on the strategies they choose. Each agent's payoff depends on balancing the benefits of group movement against the communication costs with selected neighbors. Using the Fermi rule, individuals adjust their strategies accordingly. The study indicates that agents achieve the highest levels of cooperation and the fastest convergence times in high-density environments. When density is constant, increasing the number of neighbors enhances the synchronization; when the number of neighbors remains unchanged, a lower density leads to better synchronization. Additionally, the results show that EGT could boost the synchronization and accelerate the convergence of self-propelled agents.

Suggested Citation

  • Zhao, Hui & Zhang, Zhenyu & Tchappi, Igor & Li, Li, 2025. "An evolutionary game-based vicsek model with a fixed number of neighbors," Applied Mathematics and Computation, Elsevier, vol. 500(C).
  • Handle: RePEc:eee:apmaco:v:500:y:2025:i:c:s0096300325001304
    DOI: 10.1016/j.amc.2025.129403
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300325001304
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2025.129403?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Chaoqian & Szolnoki, Attila, 2023. "Inertia in spatial public goods games under weak selection," Applied Mathematics and Computation, Elsevier, vol. 449(C).
    2. Benjamin Allen & Gabor Lippner & Yu-Ting Chen & Babak Fotouhi & Naghmeh Momeni & Shing-Tung Yau & Martin A. Nowak, 2017. "Evolutionary dynamics on any population structure," Nature, Nature, vol. 544(7649), pages 227-230, April.
    3. You, Feng & Yang, Han-Xin & Li, Yumeng & Du, Wenbo & Wang, Gang, 2023. "A modified Vicsek model based on the evolutionary game," Applied Mathematics and Computation, Elsevier, vol. 438(C).
    4. Lu, Xinbiao & Zhang, Chi & Qin, Buzhi, 2022. "An improved Vicsek model of swarm based on remote neighbors strategy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 587(C).
    5. Li, Yumeng & Zhang, Jun & Perc, Matjaž, 2018. "Effects of compassion on the evolution of cooperation in spatial social dilemmas," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 437-443.
    6. Li, Yumeng & Wang, Hanchen & Du, Wenbo & Perc, Matjaž & Cao, Xianbin & Zhang, Jun, 2019. "Resonance-like cooperation due to transaction costs in the prisoner’s dilemma game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 248-257.
    7. Wang, Shengxian & Chen, Xiaojie & Xiao, Zhilong & Szolnoki, Attila, 2022. "Decentralized incentives for general well-being in networked public goods game," Applied Mathematics and Computation, Elsevier, vol. 431(C).
    8. Wang, Chengjie & Deng, Juan & Zhao, Hui & Li, Li, 2024. "Effect of Q-learning on the evolution of cooperation behavior in collective motion: An improved Vicsek model," Applied Mathematics and Computation, Elsevier, vol. 482(C).
    9. Qi Su & Alex McAvoy & Yoichiro Mori & Joshua B. Plotkin, 2022. "Evolution of prosocial behaviours in multilayer populations," Nature Human Behaviour, Nature, vol. 6(3), pages 338-348, March.
    10. Lee, Hsuan-Wei & Cleveland, Colin & Szolnoki, Attila, 2022. "Mercenary punishment in structured populations," Applied Mathematics and Computation, Elsevier, vol. 417(C).
    11. Zhang, Xiangyin & Fan, Suyao & Wu, Weihuan, 2023. "Enhancing synchronization of self-propelled particles via modified rule of fixed number of neighbors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 629(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Chengjie & Deng, Juan & Zhao, Hui & Li, Li, 2024. "Effect of Q-learning on the evolution of cooperation behavior in collective motion: An improved Vicsek model," Applied Mathematics and Computation, Elsevier, vol. 482(C).
    2. Yang, Zhengzhi & Zheng, Lei & Perc, Matjaž & Li, Yumeng, 2024. "Interaction state Q-learning promotes cooperation in the spatial prisoner's dilemma game," Applied Mathematics and Computation, Elsevier, vol. 463(C).
    3. Chaoqian Wang & Matjaž Perc & Attila Szolnoki, 2024. "Evolutionary dynamics of any multiplayer game on regular graphs," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    4. Wang, Chaoqian, 2024. "Evolution of trust in structured populations," Applied Mathematics and Computation, Elsevier, vol. 471(C).
    5. Arnaud Z. Dragicevic, 2025. "The Price Identity of Replicator(–Mutator) Dynamics on Graphs with Quantum Strategies in a Public Goods Game," Dynamic Games and Applications, Springer, vol. 15(1), pages 74-102, March.
    6. Chen, Wei & Wang, Jianwei & Yu, Fengyuan & He, Jialu & Xu, Wenshu & Dai, Wenhui, 2024. "Successful initial positioning of non-cooperative individuals in cooperative populations effectively hinders cooperation prosperity," Applied Mathematics and Computation, Elsevier, vol. 462(C).
    7. Huang, Chaochao & Wang, Chaoqian, 2024. "Memory-based involution dilemma on square lattices," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    8. Yan, Zeyuan & Zhao, Hui & Liang, Shu & Li, Li & Song, Yanjie, 2024. "Inter-layer feedback mechanism with reinforcement learning boosts the evolution of cooperation in multilayer network," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    9. Zhu, Wenqiang & Pan, Qiuhui & Song, Sha & He, Mingfeng, 2023. "Effects of exposure-based reward and punishment on the evolution of cooperation in prisoner’s dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    10. Allen, Benjamin & McAvoy, Alex, 2024. "The coalescent in finite populations with arbitrary, fixed structure," Theoretical Population Biology, Elsevier, vol. 158(C), pages 150-169.
    11. Qi Su & Alexander J. Stewart, 2025. "Evolutionary dynamics of behavioral motivations for cooperation," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    12. Yang, Han-Xin & Yang, Jing, 2019. "Reputation-based investment strategy promotes cooperation in public goods games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 886-893.
    13. Kurokawa, Shun, 2024. "Persistence in repeated games encourages the evolution of spite," Theoretical Population Biology, Elsevier, vol. 158(C), pages 109-120.
    14. Wang, Jianwei & Xu, Wenshu & Zhang, Xingjian & Zhao, Nianxuan & Yu, Fengyuan, 2023. "Redistribution based on willingness to cooperate promotes cooperation while intensifying equality in heterogeneous populations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 610(C).
    15. Xiaochen Wang & Lei Zhou & Alex McAvoy & Aming Li, 2023. "Imitation dynamics on networks with incomplete information," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    16. Yang, Han-Xin & Sun, Lei, 2020. "Heterogeneous donation game in geographical small-world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    17. Wang, Shengxian & Chen, Xiaojie & Xiao, Zhilong & Szolnoki, Attila, 2022. "Decentralized incentives for general well-being in networked public goods game," Applied Mathematics and Computation, Elsevier, vol. 431(C).
    18. Su, Lichen & Yang, Zhengzhi & Zhou, Bowen & Zhang, Naitian & Li, Yumeng, 2023. "Effects of interdependent network reciprocity on the evolution of public cooperation," Applied Mathematics and Computation, Elsevier, vol. 454(C).
    19. Lu, Yikang & Dai, Hui & Tan, Huaiyu & Duan, Xiaofang & Shi, Lei & Park, Junpyo, 2025. "Enhancement of persistence in the rock-paper-scissors dynamics through higher-order interactions," Applied Mathematics and Computation, Elsevier, vol. 487(C).
    20. Shen, Yong & Lei, Wei & Kang, Hongwei & Li, Mingyuan & Sun, Xingping & Chen, Qingyi, 2023. "Evolutionary dynamics of public goods game with tax-based rewarding cooperators," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:500:y:2025:i:c:s0096300325001304. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.