IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v477y2024ics0096300324002832.html
   My bibliography  Save this article

Output synchronization of reaction-diffusion neural networks with multiple output couplings via generalized intermittent control

Author

Listed:
  • Huang, Zhuoyuan
  • Bao, Haibo

Abstract

This paper specializes in exponential output synchronization of reaction-diffusion neural networks (RDNNs) for two different cases of output couplings. The proposed model is novel for incorporating multiple output couplings related to their own output states as well as output spatial diffusion couplings in the absence of ordinary differential equations (ODE) systems. Generalized intermittent control based on spatial sampled-data is adopted for the first time to handle error systems consisting of the states of RDNNs with different output couplings scenarios and the average of the sum of their output states to achieve exponential stability. Some sufficient conditions for determining the proposed network models are established by control protocols based on the Lyapunov functional method. Finally, the obtained theoretical results are demonstrated to be valid by numerical simulations.

Suggested Citation

  • Huang, Zhuoyuan & Bao, Haibo, 2024. "Output synchronization of reaction-diffusion neural networks with multiple output couplings via generalized intermittent control," Applied Mathematics and Computation, Elsevier, vol. 477(C).
  • Handle: RePEc:eee:apmaco:v:477:y:2024:i:c:s0096300324002832
    DOI: 10.1016/j.amc.2024.128822
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300324002832
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2024.128822?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. An, Xin-lei & Zhang, Li & Li, Yin-zhen & Zhang, Jian-gang, 2014. "Synchronization analysis of complex networks with multi-weights and its application in public traffic network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 412(C), pages 149-156.
    2. Chen, Wei & Yu, Yongguang & Hai, Xudong & Ren, Guojian, 2022. "Adaptive quasi-synchronization control of heterogeneous fractional-order coupled neural networks with reaction-diffusion," Applied Mathematics and Computation, Elsevier, vol. 427(C).
    3. An, Xin-lei & Zhang, Li & Zhang, Jian-gang, 2015. "Research on urban public traffic network with multi-weights based on single bus transfer junction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 748-755.
    4. M. Hymavathi & Tarek F. Ibrahim & M. Syed Ali & Gani Stamov & Ivanka Stamova & B. A. Younis & Khalid I. Osman, 2022. "Synchronization of Fractional-Order Neural Networks with Time Delays and Reaction-Diffusion Terms via Pinning Control," Mathematics, MDPI, vol. 10(20), pages 1-18, October.
    5. Lu, Jun Guo, 2008. "Global exponential stability and periodicity of reaction–diffusion delayed recurrent neural networks with Dirichlet boundary conditions," Chaos, Solitons & Fractals, Elsevier, vol. 35(1), pages 116-125.
    6. Zhou, Chao & Wang, Chunhua & Yao, Wei & Lin, Hairong, 2022. "Observer-based synchronization of memristive neural networks under DoS attacks and actuator saturation and its application to image encryption," Applied Mathematics and Computation, Elsevier, vol. 425(C).
    7. Xiao, Xiang & Li, Xiao-Jian & Jin, Xiao-Zheng & Cui, Yan, 2018. "Output synchronization control for a class of complex dynamical networks with non-identical dynamics," Applied Mathematics and Computation, Elsevier, vol. 335(C), pages 38-49.
    8. Li, Xing-Yu & Wu, Kai-Ning & Liu, Xiao-Zhen, 2023. "Mittag–Leffler stabilization for short memory fractional reaction-diffusion systems via intermittent boundary control," Applied Mathematics and Computation, Elsevier, vol. 449(C).
    9. Li, Ruoxia & Cao, Jinde, 2016. "Stability analysis of reaction-diffusion uncertain memristive neural networks with time-varying delays and leakage term," Applied Mathematics and Computation, Elsevier, vol. 278(C), pages 54-69.
    10. Liu, Xiaonan & Kao, Yonggui, 2021. "Aperiodically intermittent pinning outer synchronization control for delayed complex dynamical networks with reaction-diffusion terms," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wen, Tao & Jiang, Wen, 2018. "An information dimension of weighted complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 501(C), pages 388-399.
    2. Zhang, Chunmei & Han, Bang-Sheng, 2020. "Stability analysis of stochastic delayed complex networks with multi-weights based on Razumikhin technique and graph theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 538(C).
    3. Bin Yang & Xin Wang & Yongju Zhang & Yuhua Xu & Wuneng Zhou, 2019. "Finite-Time Synchronization and Synchronization Dynamics Analysis for Two Classes of Markovian Switching Multiweighted Complex Networks from Synchronization Control Rule Viewpoint," Complexity, Hindawi, vol. 2019, pages 1-17, March.
    4. Zhang, Chunmei & Chen, Tianrui, 2018. "Exponential stability of stochastic complex networks with multi-weights based on graph theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 602-611.
    5. Zhang, Chunmei & Yang, Yinghui, 2020. "Synchronization of stochastic multi-weighted complex networks with Lévy noise based on graph theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    6. Bin Yang & Xin Wang & Jian-an Fang & Yuhua Xu, 2019. "The Impact of Coupling Function on Finite-Time Synchronization Dynamics of Multi-Weighted Complex Networks with Switching Topology," Complexity, Hindawi, vol. 2019, pages 1-15, March.
    7. Li, Xiaoqing & She, Kun & Zhong, Shouming & Shi, Kaibo & Kang, Wei & Cheng, Jun & Yu, Yongbin, 2018. "Extended robust global exponential stability for uncertain switched memristor-based neural networks with time-varying delays," Applied Mathematics and Computation, Elsevier, vol. 325(C), pages 271-290.
    8. Chen, Zhang, 2009. "Dynamic analysis of reaction–diffusion Cohen–Grossberg neural networks with varying delay and Robin boundary conditions," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1724-1730.
    9. Li, Liangchen & Xu, Rui & Lin, Jiazhe, 2020. "Lagrange stability for uncertain memristive neural networks with Lévy noise and leakage delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    10. Huang, Chengdai & Cao, Jinde & Xiao, Min & Alsaedi, Ahmed & Hayat, Tasawar, 2017. "Bifurcations in a delayed fractional complex-valued neural network," Applied Mathematics and Computation, Elsevier, vol. 292(C), pages 210-227.
    11. Wang, Yuxiao & Cao, Yuting & Guo, Zhenyuan & Wen, Shiping, 2020. "Passivity and passification of memristive recurrent neural networks with multi-proportional delays and impulse," Applied Mathematics and Computation, Elsevier, vol. 369(C).
    12. Hua, Wentao & Wang, Yantao & Liu, Chunyan, 2024. "New method for global exponential synchronization of multi-link memristive neural networks with three kinds of time-varying delays," Applied Mathematics and Computation, Elsevier, vol. 471(C).
    13. Shi, Jinyao & Zhou, Peipei & Cai, Shuiming & Jia, Qiang, 2023. "Exponential synchronization for multi-weighted dynamic networks via finite-level quantized control with adaptive scaling gain," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    14. M. Syed Ali & Gani Stamov & Ivanka Stamova & Tarek F. Ibrahim & Arafa A. Dawood & Fathea M. Osman Birkea, 2023. "Global Asymptotic Stability and Synchronization of Fractional-Order Reaction–Diffusion Fuzzy BAM Neural Networks with Distributed Delays via Hybrid Feedback Controllers," Mathematics, MDPI, vol. 11(20), pages 1-24, October.
    15. Chen, Wei & Yu, Yongguang & Hai, Xudong & Ren, Guojian, 2022. "Adaptive quasi-synchronization control of heterogeneous fractional-order coupled neural networks with reaction-diffusion," Applied Mathematics and Computation, Elsevier, vol. 427(C).
    16. Zhang, Hai & Chen, Xinbin & Ye, Renyu & Stamova, Ivanka & Cao, Jinde, 2023. "Adaptive quasi-synchronization analysis for Caputo delayed Cohen–Grossberg neural networks," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 212(C), pages 49-65.
    17. Syed Ali, M. & Narayanan, Govindasamy & Shekher, Vineet & Alsulami, Hamed & Saeed, Tareq, 2020. "Dynamic stability analysis of stochastic fractional-order memristor fuzzy BAM neural networks with delay and leakage terms," Applied Mathematics and Computation, Elsevier, vol. 369(C).
    18. Yu Wei & Sun Ning, 2018. "Establishment and Analysis of the Supernetwork Model for Nanjing Metro Transportation System," Complexity, Hindawi, vol. 2018, pages 1-11, December.
    19. Zhang, Qi & Luo, Chuanhai & Li, Meizhu & Deng, Yong & Mahadevan, Sankaran, 2015. "Tsallis information dimension of complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 707-717.
    20. Jin, Kun & Wang, Wei & Li, Xinran & Chen, Siyuan & Qin, Shaoyang & Hua, Xuedong, 2023. "Cascading failure in urban rail transit network considering demand variation and time delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:477:y:2024:i:c:s0096300324002832. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.