IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v426y2022ics0096300322002119.html
   My bibliography  Save this article

Fuzzy adaptive-event-triggered control for semi-linear parabolic PDE systems with stochastic actuator failures

Author

Listed:
  • Song, Xiaona
  • Zhang, Renzhi
  • Song, Shuai
  • Zhang, Yijun

Abstract

This paper investigates the fault-tolerant control problem for fuzzy semi-linear parabolic PDE systems with stochastic actuator failures. First, a pointwise measurement-based adaptive-event-triggered control scheme is newly proposed for semi-linear PDE systems to reduce the waste of communication resources. Second, by introducing a more practical semi-Markov jump model describing the random occurring actuator failures, the closed-loop system is exactly represented by a T–S fuzzy PDE model with semi-Markovian switching parameters. Moreover, by constructing a suitable LKF including an improved looped-functional and using some advanced inequalities, sufficient stability conditions with less conservatism are established. Finally, two simulation examples including comparative studies are employed to demonstrate the superiority and effectiveness of the developed method.

Suggested Citation

  • Song, Xiaona & Zhang, Renzhi & Song, Shuai & Zhang, Yijun, 2022. "Fuzzy adaptive-event-triggered control for semi-linear parabolic PDE systems with stochastic actuator failures," Applied Mathematics and Computation, Elsevier, vol. 426(C).
  • Handle: RePEc:eee:apmaco:v:426:y:2022:i:c:s0096300322002119
    DOI: 10.1016/j.amc.2022.127127
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300322002119
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2022.127127?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Jing & Liang, Kun & Huang, Xia & Wang, Zhen & Shen, Hao, 2018. "Dissipative fault-tolerant control for nonlinear singular perturbed systems with Markov jumping parameters based on slow state feedback," Applied Mathematics and Computation, Elsevier, vol. 328(C), pages 247-262.
    2. Song, Xiaona & Wang, Mi & Song, Shuai & Wang, Zhen, 2021. "Observer-based sliding mode control for stochastic hyperbolic PDE systems with quantized output signal," Applied Mathematics and Computation, Elsevier, vol. 393(C).
    3. Zhang, Ruimei & Zeng, Deqiang & Zhong, Shouming & Yu, Yongbin, 2017. "Event-triggered sampling control for stability and stabilization of memristive neural networks with communication delays," Applied Mathematics and Computation, Elsevier, vol. 310(C), pages 57-74.
    4. Mlayeh, Rhouma & Toumi, Samir & Beji, Lotfi, 2018. "Backstepping boundary observer based-control for hyperbolic PDE in rotary drilling system," Applied Mathematics and Computation, Elsevier, vol. 322(C), pages 66-78.
    5. Wang, Yudong & Xia, Jianwei & Wang, Zhen & Shen, Hao, 2020. "Design of a fault-tolerant output-feedback controller for thickness control in cold rolling mills," Applied Mathematics and Computation, Elsevier, vol. 369(C).
    6. Chen, Jun & Park, Ju H., 2020. "New versions of Bessel–Legendre inequality and their applications to systems with time-varying delay," Applied Mathematics and Computation, Elsevier, vol. 375(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ge, Chao & Shi, Yanpen & Park, Ju H. & Hua, Changchun, 2019. "Robust H∞ stabilization for T-S fuzzy systems with time-varying delays and memory sampled-data control," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 500-512.
    2. Wu, Tianyu & Huang, Xia & Chen, Xiangyong & Wang, Jing, 2020. "Sampled-data H∞ exponential synchronization for delayed semi-Markov jump CDNs: A looped-functional approach," Applied Mathematics and Computation, Elsevier, vol. 377(C).
    3. Sakthivel, Rathinasamy & Suveetha, V.T. & Nithya, Venkatesh & Sakthivel, Ramalingam, 2020. "Finite-time fault detection filter design for complex systems with multiple stochastic communication and distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    4. Fu, Xiaozheng & Zhu, Quanxin & Guo, Yingxin, 2019. "Stabilization of stochastic functional differential systems with delayed impulses," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 776-789.
    5. Tu, Zhengwen & Zhao, Yongxiang & Ding, Nan & Feng, Yuming & Zhang, Wei, 2019. "Stability analysis of quaternion-valued neural networks with both discrete and distributed delays," Applied Mathematics and Computation, Elsevier, vol. 343(C), pages 342-353.
    6. Hong, Yaxian & Bin, Honghua & Huang, Zhenkun, 2019. "Synchronization of state-switching hopfield-type neural networks: A quantized level set approach," Chaos, Solitons & Fractals, Elsevier, vol. 129(C), pages 16-24.
    7. Jiao, Shiyu & Shen, Hao & Wei, Yunliang & Huang, Xia & Wang, Zhen, 2018. "Further results on dissipativity and stability analysis of Markov jump generalized neural networks with time-varying interval delays," Applied Mathematics and Computation, Elsevier, vol. 336(C), pages 338-350.
    8. Liu, Yunfeng & Song, Zhiqiang & Tan, Manchun, 2019. "Multiple μ-stability and multiperiodicity of delayed memristor-based fuzzy cellular neural networks with nonmonotonic activation functions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 159(C), pages 1-17.
    9. Zhang, Zhiming & Zheng, Wei & Lam, H.K. & Wen, Shuhuan & Sun, Fuchun & Xie, Ping, 2020. "Stability analysis and output feedback control for stochastic networked systems with multiple communication delays and nonlinearities using fuzzy control technique," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    10. Kwon, O.M. & Lee, S.H. & Park, M.J. & Lee, S.M., 2020. "Augmented zero equality approach to stability for linear systems with time-varying delay," Applied Mathematics and Computation, Elsevier, vol. 381(C).
    11. Li, Tao & Tang, Xiaoling & Qian, Wei & Fei, Shumin, 2019. "Hybrid-delay-dependent approach to synchronization in distributed delay neutral neural networks," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 449-463.
    12. Yueping Sun & Li Ma & Dean Zhao & Shihong Ding, 2018. "A Compound Controller Design for a Buck Converter," Energies, MDPI, vol. 11(9), pages 1-17, September.
    13. Xia, ZeLiang & He, Shuping, 2022. "Finite-time asynchronous H∞ fault-tolerant control for nonlinear hidden markov jump systems with actuator and sensor faults," Applied Mathematics and Computation, Elsevier, vol. 428(C).
    14. Yao, Xueqi & Zhong, Shouming & Hu, Taotao & Cheng, Hong & Zhang, Dian, 2019. "Uniformly stable and attractive of fractional-order memristor-based neural networks with multiple delays," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 392-403.
    15. Liu, Yang & Zhang, Zhenzhen & Chen, Hao & Zhong, Shouming, 2023. "A memory behavior related hybrid event-triggered mechanism for an improved robust control on neural networks," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 212(C), pages 1-20.
    16. Yan, Lisha & Wang, Zhen & Zhang, Mingguang & Fan, Yingjie, 2023. "Sampled-data control for mean-square exponential stabilization of memristive neural networks under deception attacks," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    17. Zeng, Deqiang & Zhang, Ruimei & Liu, Yajuan & Zhong, Shouming, 2017. "Sampled-data synchronization of chaotic Lur’e systems via input-delay-dependent-free-matrix zero equality approach," Applied Mathematics and Computation, Elsevier, vol. 315(C), pages 34-46.
    18. Zhang, Dian & Cheng, Jun & Ki Ahn, Choon & Ni, Hongjie, 2019. "A flexible terminal approach to stochastic stability and stabilization of continuous-time semi-Markovian jump systems with time-varying delay," Applied Mathematics and Computation, Elsevier, vol. 342(C), pages 191-205.
    19. Yang, Yi & Li, Xiaohua & Liu, Xiaoping, 2022. "Decentralized finite-time connective tracking control with prescribed settling time for p-normal form stochastic large-scale systems," Applied Mathematics and Computation, Elsevier, vol. 412(C).
    20. Zeng, Deqiang & Pu, Zhilin & Zhang, Ruimei & Zhong, Shouming & Liu, Yajuan & Wu, Guo-Cheng, 2019. "Stochastic reliable synchronization for coupled Markovian reaction–diffusion neural networks with actuator failures and generalized switching policies," Applied Mathematics and Computation, Elsevier, vol. 357(C), pages 88-106.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:426:y:2022:i:c:s0096300322002119. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.