IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v408y2021ics0096300321004586.html
   My bibliography  Save this article

Adaptive neural networks control for MIMO nonlinear systems with unmeasured states and unmodeled dynamics

Author

Listed:
  • Wang, Sanxia
  • Xia, Jianwei
  • Wang, Xueliang
  • Yang, Wenjing
  • Wang, Linqi

Abstract

In this paper, an adaptive neural networks control scheme is developed for a class of multi input and multi output uncertain nonlinear systems with unmeasured states and unmodeled dynamics. In the control scheme, a dynamic signal is used to deal with the unmodeled dynamics and a neural observer is designed to estimate the unmeasured states. Meanwhile, the neural networks are used to estimate the combinational unknown nonlinear function at each step of backstepping process. It is proved that all signals of the closed-loop system are semi global uniformly ultimately bounded (SGUUB). Finally, a simulation example is provided to show the effectiveness of the proposed control method.

Suggested Citation

  • Wang, Sanxia & Xia, Jianwei & Wang, Xueliang & Yang, Wenjing & Wang, Linqi, 2021. "Adaptive neural networks control for MIMO nonlinear systems with unmeasured states and unmodeled dynamics," Applied Mathematics and Computation, Elsevier, vol. 408(C).
  • Handle: RePEc:eee:apmaco:v:408:y:2021:i:c:s0096300321004586
    DOI: 10.1016/j.amc.2021.126369
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300321004586
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2021.126369?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Min, Huifang & Xu, Shengyuan & Yu, Xin & Fei, Shumin & Cui, Guozeng, 2020. "Adaptive Tracking Control for Stochastic Nonlinear Systems with Full-State Constraints and Unknown Covariance Noise," Applied Mathematics and Computation, Elsevier, vol. 385(C).
    2. Jiali Ma & Guangming Zhuang & Guozeng Cui & Jiaqi Wang, 2019. "Observer-based adaptive control for nonlinear input-delay systems with unknown control directions," International Journal of Systems Science, Taylor & Francis Journals, vol. 50(8), pages 1543-1555, June.
    3. Tingting Gao & Jiangshuai Huang & Yong Zhou, 2018. "Adaptive consensus control of nonlinear systems with unknown control directions," International Journal of Systems Science, Taylor & Francis Journals, vol. 49(9), pages 1908-1917, July.
    4. Baoyu Huo & Shaocheng Tong & Yongming Li, 2013. "Adaptive fuzzy fault-tolerant output feedback control of uncertain nonlinear systems with actuator faults," International Journal of Systems Science, Taylor & Francis Journals, vol. 44(12), pages 2365-2376.
    5. Qing-Yuan Xu & Xiao-Dong Li, 2018. "Adaptive fuzzy ILC of nonlinear discrete-time systems with unknown dead zones and control directions," International Journal of Systems Science, Taylor & Francis Journals, vol. 49(9), pages 1878-1894, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiongfeng Deng & Jiakai Wang, 2022. "Fuzzy-Based Adaptive Dynamic Surface Control for a Type of Uncertain Nonlinear System with Unknown Actuator Faults," Mathematics, MDPI, vol. 10(10), pages 1-21, May.
    2. Chen, Xiang & Li, Shi & Wang, Ronghao & Xiang, Zhengrong, 2023. "Event-Triggered output feedback adaptive control for nonlinear switched interconnected systems with unknown control coefficients," Applied Mathematics and Computation, Elsevier, vol. 445(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Zhipeng & Wang, Huimin, 2022. "Resilient decentralized adaptive tracking control for nonlinear interconnected systems with unknown control directions against DoS attacks," Applied Mathematics and Computation, Elsevier, vol. 415(C).
    2. Zhang, Zhiming & Zheng, Wei & Lam, H.K. & Wen, Shuhuan & Sun, Fuchun & Xie, Ping, 2020. "Stability analysis and output feedback control for stochastic networked systems with multiple communication delays and nonlinearities using fuzzy control technique," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    3. Honghong Wang & Bing Chen & Chong Lin & Yumei Sun, 2017. "Adaptive fuzzy output-feedback control for a class of nonlinear pure-feedback systems with time delays," International Journal of Systems Science, Taylor & Francis Journals, vol. 48(6), pages 1242-1253, April.
    4. Shuxian Lun & Zhaoyi Lv & Xiaodong Lu & Ming Li, 2023. "ESN-Observer-Based Adaptive Stabilization Control for Delayed Nonlinear Systems with Unknown Control Gain," Mathematics, MDPI, vol. 11(13), pages 1-21, July.
    5. Yuan, Manman & Zhai, Junyong & Ye, Hui, 2022. "Adaptive output feedback control for a class of switched stochastic nonlinear systems via an event-triggered strategy," Applied Mathematics and Computation, Elsevier, vol. 422(C).
    6. Xiaohuan Lai & Haipeng Pan & Xinlong Zhao, 2019. "Adaptive Control for Pure-Feedback Nonlinear Systems Preceded by Asymmetric Hysteresis," Energies, MDPI, vol. 12(24), pages 1-13, December.
    7. Mei, Keqi & Ma, Li & He, Runxin & Ding, Shihong, 2020. "Finite-time controller design of multiple integrator nonlinear systems with input saturation," Applied Mathematics and Computation, Elsevier, vol. 372(C).
    8. Hu, Yifan & Liu, Wenhui, 2023. "Adaptive fuzzy dynamic surface control for nonstrict-feedback nonlinear state constrained systems with input dead-zone via event-triggered sampling," Applied Mathematics and Computation, Elsevier, vol. 450(C).
    9. Qing-Yuan Xu & Wan-Ying He & Chuang-Tao Zheng & Peng Xu & Yun-Shan Wei & Kai Wan, 2022. "Adaptive Fuzzy Iterative Learning Control for Systems with Saturated Inputs and Unknown Control Directions," Mathematics, MDPI, vol. 10(19), pages 1-17, September.
    10. Zheng, Wei & Zhang, Zhiming & Lam, Hak-Keung & Sun, Fuchun & Wen, Shuhuan, 2023. "LMIs-based exponential stabilization for interval delay systems via congruence transformation: Application in chaotic Lorenz system," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    11. Li, Huijuan & Li, Wuquan & Gu, Jianzhong, 2022. "Decentralized stabilization of large-scale stochastic nonlinear systems with time-varying powers," Applied Mathematics and Computation, Elsevier, vol. 418(C).
    12. Changhui Wang & Mei Liang & Yongsheng Chai, 2019. "Adaptive Neural Network Control of a Class of Fractional Order Uncertain Nonlinear MIMO Systems with Input Constraints," Complexity, Hindawi, vol. 2019, pages 1-15, November.
    13. Yinyin Xu & Shaocheng Tong & Yongming Li, 2015. "Adaptive fuzzy decentralised fault-tolerant control for nonlinear large-scale systems with actuator failures and unmodelled dynamics," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(12), pages 2195-2209, September.
    14. Yun Ho Choi & Sung Jin Yoo, 2020. "Tracking Control Strategy Using Filter-Based Approximation for the Unknown Control Direction Problem of Uncertain Pure-Feedback Nonlinear Systems," Mathematics, MDPI, vol. 8(8), pages 1-17, August.
    15. Xuemiao Chen & Qianjin Zhao & Chunsheng Zhang & Jian Wu, 2019. "Adaptive Asymptotic Tracking Control for a Class of Uncertain Switched Systems via Dynamic Surface Technique," Complexity, Hindawi, vol. 2019, pages 1-9, October.
    16. Yao, Yangang & Tan, Jieqing & Wu, Jian & Zhang, Xu & He, Lei, 2022. "Prescribed tracking error fixed-time control of stochastic nonlinear systems," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    17. Hua, Yu & Zhang, Tianping & Xia, Xiaonan, 2022. "Event-triggered adaptive neural command-filter-based dynamic surface control for state constrained nonlinear systems," Applied Mathematics and Computation, Elsevier, vol. 434(C).
    18. Yun-Shan Wei & Qing-Yuan Xu, 2018. "Iterative Learning Control for Linear Discrete-Time Systems with Randomly Variable Input Trail Length," Complexity, Hindawi, vol. 2018, pages 1-6, November.
    19. Li, Jiahao & Liu, Yu & Yu, Jinyong, 2022. "A new result on semi-synchronous event-triggered backstepping robust control for a class of non-Lipschitzian networked systems," Applied Mathematics and Computation, Elsevier, vol. 424(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:408:y:2021:i:c:s0096300321004586. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.