IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v475y2024ics0096300324001711.html
   My bibliography  Save this article

A novel observer-based neural-network finite-time output control for high-order uncertain nonlinear systems

Author

Listed:
  • Truong, Hoai Vu Anh
  • Phan, Van Du
  • Tran, Duc Thien
  • Ahn, Kyoung Kwan

Abstract

Due to the difficulty encountered in dealing with unstructured system dynamics with unmeasured system state variables, this paper presents a novel observer-based neural network finite-time output control strategy for general high-order nonlinear systems (HNSs). The suggested technique is performed based on the backstepping-like control (BSC) scheme with a hybrid nonlinear disturbance-state observer and norm estimation-based radial basis function neural network (RBFNN). This helps not only reduce the number of estimated parameters but also relax the restriction of using inequality when exploiting the norm estimation concept in a conventional way; thus, retaining the same properties of the original system. Therefore, an observer-based finite-time output feedback control is established to deal with the unstructured dynamical behaviors and satisfying the output tracking regulation with the semi-global practically finite-time stability (SGPFS) guaranteed for the closed-loop system. The effectiveness and workability of the proposed algorithm is verified by a numerical simulation on a specific practical application.

Suggested Citation

  • Truong, Hoai Vu Anh & Phan, Van Du & Tran, Duc Thien & Ahn, Kyoung Kwan, 2024. "A novel observer-based neural-network finite-time output control for high-order uncertain nonlinear systems," Applied Mathematics and Computation, Elsevier, vol. 475(C).
  • Handle: RePEc:eee:apmaco:v:475:y:2024:i:c:s0096300324001711
    DOI: 10.1016/j.amc.2024.128699
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300324001711
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2024.128699?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:475:y:2024:i:c:s0096300324001711. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.