IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v367y2020ics0096300319307374.html
   My bibliography  Save this article

Two novel linear-implicit momentum-conserving schemes for the fractional Korteweg-de Vries equation

Author

Listed:
  • Yan, Jingye
  • Zhang, Hong
  • Liu, Ziyuan
  • Song, Songhe

Abstract

We propose two conservative linear-implicit schemes for the space fractional Korteweg-de Vries (fKdV) equation. One is the linear-implicit Crank–Nicolson scheme and the other is the linear-implicit leap-frog scheme. In order to obtain a high order discretization in the space direction, we adopt the Fourier pseudospectral method. The Crank–Nicolson scheme and leap-frog scheme are used for temporal discretization, and those two schemes are efficient in practical computations because of their linear property. Furthermore, we analyse the uniqueness, boundness, convergence of the two schemes. Numerical experiments are presented to validate the theoretical analysis.

Suggested Citation

  • Yan, Jingye & Zhang, Hong & Liu, Ziyuan & Song, Songhe, 2020. "Two novel linear-implicit momentum-conserving schemes for the fractional Korteweg-de Vries equation," Applied Mathematics and Computation, Elsevier, vol. 367(C).
  • Handle: RePEc:eee:apmaco:v:367:y:2020:i:c:s0096300319307374
    DOI: 10.1016/j.amc.2019.124745
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300319307374
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2019.124745?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Qi, 2008. "Homotopy perturbation method for fractional KdV-Burgers equation," Chaos, Solitons & Fractals, Elsevier, vol. 35(5), pages 843-850.
    2. Wang, Junjie & Xiao, Aiguo, 2019. "Conservative Fourier spectral method and numerical investigation of space fractional Klein–Gordon–Schrödinger equations," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 348-365.
    3. Qin, Wendi & Ding, Deqiong & Ding, Xiaohua, 2015. "Two boundedness and monotonicity preserving methods for a generalized Fisher-KPP equation," Applied Mathematics and Computation, Elsevier, vol. 252(C), pages 552-567.
    4. Wang, Jun-jie & Xiao, Ai-guo, 2018. "An efficient conservative difference scheme for fractional Klein–Gordon–Schrödinger equations," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 691-709.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hu, Dongdong & Cai, Wenjun & Xu, Zhuangzhi & Bo, Yonghui & Wang, Yushun, 2021. "Dissipation-preserving Fourier pseudo-spectral method for the space fractional nonlinear sine–Gordon equation with damping," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 188(C), pages 35-59.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Yantao & Fu, Yayun, 2023. "Two efficient exponential energy-preserving schemes for the fractional Klein–Gordon Schrödinger equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 209(C), pages 169-183.
    2. Wu, Longbin & Ma, Qiang & Ding, Xiaohua, 2021. "Energy-preserving scheme for the nonlinear fractional Klein–Gordon Schrödinger equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 1110-1129.
    3. Xing, Zhiyong & Wen, Liping & Wang, Wansheng, 2021. "An explicit fourth-order energy-preserving difference scheme for the Riesz space-fractional Sine–Gordon equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 181(C), pages 624-641.
    4. Biazar, J. & Eslami, M. & Aminikhah, H., 2009. "Application of homotopy perturbation method for systems of Volterra integral equations of the first kind," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 3020-3026.
    5. Wang, Junjie & Xiao, Aiguo, 2019. "Conservative Fourier spectral method and numerical investigation of space fractional Klein–Gordon–Schrödinger equations," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 348-365.
    6. Macías-Díaz, J.E., 2018. "A numerically efficient Hamiltonian method for fractional wave equations," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 231-248.
    7. Biazar, J. & Ghazvini, H., 2009. "He’s homotopy perturbation method for solving systems of Volterra integral equations of the second kind," Chaos, Solitons & Fractals, Elsevier, vol. 39(2), pages 770-777.
    8. Yusufoğlu (Agadjanov), Elcin, 2009. "Improved homotopy perturbation method for solving Fredholm type integro-differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 28-37.
    9. Shumaila Javeed & Dumitru Baleanu & Asif Waheed & Mansoor Shaukat Khan & Hira Affan, 2019. "Analysis of Homotopy Perturbation Method for Solving Fractional Order Differential Equations," Mathematics, MDPI, vol. 7(1), pages 1-14, January.
    10. Martínez, Romeo & Macías-Díaz, Jorge E. & Sheng, Qin, 2022. "A nonlinear discrete model for approximating a conservative multi-fractional Zakharov system: Analysis and computational simulations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 202(C), pages 1-21.
    11. Li, Meng & Fei, Mingfa & Wang, Nan & Huang, Chengming, 2020. "A dissipation-preserving finite element method for nonlinear fractional wave equations on irregular convex domains," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 177(C), pages 404-419.
    12. Macías-Díaz, J.E. & Hendy, A.S. & De Staelen, R.H., 2018. "A compact fourth-order in space energy-preserving method for Riesz space-fractional nonlinear wave equations," Applied Mathematics and Computation, Elsevier, vol. 325(C), pages 1-14.
    13. Gupta, A.K. & Ray, S. Saha, 2018. "On the solution of time-fractional KdV–Burgers equation using Petrov–Galerkin method for propagation of long wave in shallow water," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 376-380.
    14. Sapa, Lucjan, 2018. "Difference methods for parabolic equations with Robin condition," Applied Mathematics and Computation, Elsevier, vol. 321(C), pages 794-811.
    15. Cveticanin, L., 2009. "Application of homotopy-perturbation to non-linear partial differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 40(1), pages 221-228.
    16. Che, Han & Wang, Yu-Lan & Li, Zhi-Yuan, 2022. "Novel patterns in a class of fractional reaction–diffusion models with the Riesz fractional derivative," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 202(C), pages 149-163.
    17. Huang, Qiong-Ao & Zhang, Gengen & Wu, Bing, 2022. "Fully-discrete energy-preserving scheme for the space-fractional Klein–Gordon equation via Lagrange multiplier type scalar auxiliary variable approach," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 192(C), pages 265-277.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:367:y:2020:i:c:s0096300319307374. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.