IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v339y2018icp81-92.html
   My bibliography  Save this article

Mean-square dissipative methods for stochastic age-dependent capital system with fractional Brownian motion and jumps

Author

Listed:
  • Li, Qiang
  • Kang, Ting
  • Zhang, Qimin

Abstract

In this paper, we analyze mean-square dissipativity of numerical methods applied to a class of stochastic age-dependent (vintage) capital system with fractional Brownian motion (fBm) and Poisson jumps. Some sufficient conditions are obtained for ensuring the underlying systems are mean-square dissipative. It is shown that the mean-square dissipativity is preserved by the compensated split-step backward Euler method and compensated backward Euler method without any restriction on stepsize, while the split-step backward Euler method and backward Euler method could reproduce mean-square dissipativity under a stepsize constraint. Those results indicate that compensated numerical methods achieve superiority over non-compensated numerical methods in terms of mean-square dissipativity. A numerical example is provided to illustrate the theoretical results.

Suggested Citation

  • Li, Qiang & Kang, Ting & Zhang, Qimin, 2018. "Mean-square dissipative methods for stochastic age-dependent capital system with fractional Brownian motion and jumps," Applied Mathematics and Computation, Elsevier, vol. 339(C), pages 81-92.
  • Handle: RePEc:eee:apmaco:v:339:y:2018:i:c:p:81-92
    DOI: 10.1016/j.amc.2018.07.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300318305769
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2018.07.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Feichtinger, Gustav & Hartl, Richard F. & Kort, Peter M. & Veliov, Vladimir M., 2006. "Capital accumulation under technological progress and learning: A vintage capital approach," European Journal of Operational Research, Elsevier, vol. 172(1), pages 293-310, July.
    2. Cai, Yongli & Jiao, Jianjun & Gui, Zhanji & Liu, Yuting & Wang, Weiming, 2018. "Environmental variability in a stochastic epidemic model," Applied Mathematics and Computation, Elsevier, vol. 329(C), pages 210-226.
    3. Feichtinger, Gustav & Hartl, Richard F. & Kort, Peter M. & Veliov, Vladimir M., 2006. "Anticipation effects of technological progress on capital accumulation: a vintage capital approach," Journal of Economic Theory, Elsevier, vol. 126(1), pages 143-164, January.
    4. Guo, Wenjuan & Cai, Yongli & Zhang, Qimin & Wang, Weiming, 2018. "Stochastic persistence and stationary distribution in an SIS epidemic model with media coverage," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 2220-2236.
    5. Goetz, Renan-Ulrich & Hritonenko, Natali & Yatsenko, Yuri, 2008. "The optimal economic lifetime of vintage capital in the presence of operating costs, technological progress, and learning," Journal of Economic Dynamics and Control, Elsevier, vol. 32(9), pages 3032-3053, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Burgos, C. & Cortés, J.-C. & Debbouche, A. & Villafuerte, L. & Villanueva, R.-J., 2019. "Random fractional generalized Airy differential equations: A probabilistic analysis using mean square calculus," Applied Mathematics and Computation, Elsevier, vol. 352(C), pages 15-29.
    2. He, Lingyun & Banihashemi, Seddigheh & Jafari, Hossein & Babaei, Afshin, 2021. "Numerical treatment of a fractional order system of nonlinear stochastic delay differential equations using a computational scheme," Chaos, Solitons & Fractals, Elsevier, vol. 149(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kredler, Matthias, 2014. "Vintage human capital and learning curves," Journal of Economic Dynamics and Control, Elsevier, vol. 40(C), pages 154-178.
    2. B. Skritek & V. M. Veliov, 2015. "On the Infinite-Horizon Optimal Control of Age-Structured Systems," Journal of Optimization Theory and Applications, Springer, vol. 167(1), pages 243-271, October.
    3. Xu, Jiang & Chen, Tao & Wen, Xiangdan, 2021. "Analysis of a Bailey–Dietz model for vector-borne disease under regime switching," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
    4. Raouf Boucekkine & David De la Croix & Omar Licandro, 2011. "Vintage Capital Growth Theory: Three Breakthroughs," Working Papers 565, Barcelona School of Economics.
    5. Fabbri, Giorgio & Gozzi, Fausto & Zanco, Giovanni, 2021. "Verification results for age-structured models of economic–epidemics dynamics," Journal of Mathematical Economics, Elsevier, vol. 93(C).
    6. Raouf Boucekkine & David Croix & Omar Licandro, 2004. "MODELLING VINTAGE STRUCTURES WITH DDEs: PRINCIPLES AND APPLICATIONS," Mathematical Population Studies, Taylor & Francis Journals, vol. 11(3-4), pages 151-179.
    7. Wang, Weiming & Cai, Yongli & Ding, Zuqin & Gui, Zhanji, 2018. "A stochastic differential equation SIS epidemic model incorporating Ornstein–Uhlenbeck process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 921-936.
    8. Frankovic, Ivan & Kuhn, Michael & Wrzaczek, Stefan, 2016. "Medical care within an OLG economy with realistic demography," ECON WPS - Working Papers in Economic Theory and Policy 02/2016, TU Wien, Institute of Statistics and Mathematical Methods in Economics, Economics Research Unit.
    9. Faggian, Silvia & Gozzi, Fausto, 2010. "Optimal investment models with vintage capital: Dynamic programming approach," Journal of Mathematical Economics, Elsevier, vol. 46(4), pages 416-437, July.
    10. Dieter Grass & Richard F. Hartl & Peter M. Kort, 2012. "Capital Accumulation and Embodied Technological Progress," Journal of Optimization Theory and Applications, Springer, vol. 154(2), pages 588-614, August.
    11. Guo, Wenjuan & Zhang, Qimin, 2021. "Explicit numerical approximation for an impulsive stochastic age-structured HIV infection model with Markovian switching," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 182(C), pages 86-115.
    12. Wang, Lei & Wang, Kai & Jiang, Daqing & Hayat, Tasawar, 2018. "Nontrivial periodic solution for a stochastic brucellosis model with application to Xinjiang, China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 522-537.
    13. Silvia Faggian & Luca Grosset, 2009. "Optimal investment in age-structured goodwill," Working Papers 194, Department of Applied Mathematics, Università Ca' Foscari Venezia.
    14. Yang, Bo, 2018. "A stochastic Feline immunodeficiency virus model with vertical transmission," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 448-458.
    15. Hritonenko, Natali & Yatsenko, Yuri, 2010. "Technological innovations, economic renovation, and anticipation effects," Journal of Mathematical Economics, Elsevier, vol. 46(6), pages 1064-1078, November.
    16. Mauro Bambi & Cristina Girolami & Salvatore Federico & Fausto Gozzi, 2017. "Generically distributed investments on flexible projects and endogenous growth," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 63(2), pages 521-558, February.
    17. Kuhn, Michael & Frankovic, Ivan & Wrzaczek, Stefan, 2017. "Medical Progress, Demand for Health Care, and Economic Performance," VfS Annual Conference 2017 (Vienna): Alternative Structures for Money and Banking 168249, Verein für Socialpolitik / German Economic Association.
    18. Liu, Qun & Jiang, Daqing, 2020. "Threshold behavior in a stochastic SIR epidemic model with Logistic birth," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    19. Ralph Winkler, 2008. "Optimal compliance with emission constraints: dynamic characteristics and the choice of technique," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 39(4), pages 411-432, April.
    20. Lan, Guijie & Wei, Chunjin & Zhang, Shuwen, 2019. "Long time behaviors of single-species population models with psychological effect and impulsive toxicant in polluted environments," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 828-842.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:339:y:2018:i:c:p:81-92. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.