IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v97y2010i7p981-987.html
   My bibliography  Save this article

Response of soybean genotypes to different irrigation regimes in a humid region of the southeastern USA

Author

Listed:
  • Garcia y Garcia, A.
  • Persson, T.
  • Guerra, L.C.
  • Hoogenboom, G.

Abstract

Studies on irrigation scheduling for soybean have demonstrated that avoiding irrigation during the vegetative growth stages could result in yields as high as those obtained if the crop was fully irrigated during the entire growing season. This could ultimately also lead to an improvement of the irrigation water use efficiency. The objective of this study was to determine the effect of different irrigation regimes (IRs) on growth and yield of four soybean genotypes and to determine their irrigation water use efficiency. A field experiment consisting of three IR using a lateral move sprinkler system and four soybean genotypes was conducted at the Bledsoe Research Farm of The University of Georgia, USA. The irrigation treatments consisted of full season irrigated (FSI), start irrigation at flowering (SIF), and rainfed (RFD); the soybean genotypes represented maturity groups (MGs) V, VI, VII, and VIII. A completely randomized block design in a split-plot array with four replicates was used with IR as the main treatment and the soybean MGs as the sub-treatment. Weather variables and soil moisture were recorded with an automatic weather station located nearby, while rainfall and irrigation amounts were recorded with rain gauges located in the experimental field. Samplings for growth analysis of the plant and its components as well as leaf area index (LAI) and canopy height were obtained every 12 days. The irrigation water use efficiency (IWUE) or ratio of the difference between irrigated and rainfed yield to the amount of irrigation water applied was estimated. The results showed significant differences (P

Suggested Citation

  • Garcia y Garcia, A. & Persson, T. & Guerra, L.C. & Hoogenboom, G., 2010. "Response of soybean genotypes to different irrigation regimes in a humid region of the southeastern USA," Agricultural Water Management, Elsevier, vol. 97(7), pages 981-987, July.
  • Handle: RePEc:eee:agiwat:v:97:y:2010:i:7:p:981-987
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(10)00063-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nijbroek, Ravic & Hoogenboom, Gerrit & Jones, James W., 2003. "Optimizing irrigation management for a spatially variable soybean field," Agricultural Systems, Elsevier, vol. 76(1), pages 359-377, April.
    2. Karam, Fadi & Masaad, Randa & Sfeir, Therese & Mounzer, Oussama & Rouphael, Youssef, 2005. "Evapotranspiration and seed yield of field grown soybean under deficit irrigation conditions," Agricultural Water Management, Elsevier, vol. 75(3), pages 226-244, July.
    3. Dogan, Ergun & Kirnak, Halil & Copur, Osman, 2007. "Effect of seasonal water stress on soybean and site specific evaluation of CROPGRO-Soybean model under semi-arid climatic conditions," Agricultural Water Management, Elsevier, vol. 90(1-2), pages 56-62, May.
    4. Gerçek, Sinan & Boydak, Erkan & Okant, Mustafa & Dikilitas, Murat, 2009. "Water pillow irrigation compared to furrow irrigation for soybean production in a semi-arid area," Agricultural Water Management, Elsevier, vol. 96(1), pages 87-92, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amer, Kamal H., 2011. "Effect of irrigation method and quantity on squash yield and quality," Agricultural Water Management, Elsevier, vol. 98(8), pages 1197-1206, May.
    2. Zhang, Bangbang & Feng, Gary & Ahuja, Lajpat R. & Kong, Xiangbin & Ouyang, Ying & Adeli, Ardeshir & Jenkins, Johnie N., 2018. "Soybean crop-water production functions in a humid region across years and soils determined with APEX model," Agricultural Water Management, Elsevier, vol. 204(C), pages 180-191.
    3. Negm, Lamyaa M. & Youssef, Mohamed A. & Jaynes, Dan B., 2017. "Evaluation of DRAINMOD-DSSAT simulated effects of controlled drainage on crop yield, water balance, and water quality for a corn-soybean cropping system in central Iowa," Agricultural Water Management, Elsevier, vol. 187(C), pages 57-68.
    4. Zhang, Bangbang & Feng, Gary & Kong, Xiangbin & Lal, Rattan & Ouyang, Ying & Adeli, Ardeshir & Jenkins, Johnie N., 2016. "Simulating yield potential by irrigation and yield gap of rainfed soybean using APEX model in a humid region," Agricultural Water Management, Elsevier, vol. 177(C), pages 440-453.
    5. Moursi, Hossam & Youssef, Mohamed A. & Chescheir, George M., 2022. "Development and application of DRAINMOD model for simulating crop yield and water conservation benefits of drainage water recycling," Agricultural Water Management, Elsevier, vol. 266(C).
    6. Gajić, Boško & Kresović, Branka & Tapanarova, Angelina & Životić, Ljubomir & Todorović, Mladen, 2018. "Effect of irrigation regime on yield, harvest index and water productivity of soybean grown under different precipitation conditions in a temperate environment," Agricultural Water Management, Elsevier, vol. 210(C), pages 224-231.
    7. Arora, V.K. & Singh, C.B. & Sidhu, A.S. & Thind, S.S., 2011. "Irrigation, tillage and mulching effects on soybean yield and water productivity in relation to soil texture," Agricultural Water Management, Elsevier, vol. 98(4), pages 563-568, February.
    8. Sandhu, Rupinder & Irmak, Suat, 2022. "Effects of subsurface drip-irrigated soybean seeding rates on grain yield, evapotranspiration and water productivity under limited and full irrigation and rainfed conditions," Agricultural Water Management, Elsevier, vol. 267(C).
    9. da Silva, Evandro H.F.M. & Gonçalves, Alexandre O. & Pereira, Rodolfo A. & Fattori Júnior, Izael M. & Sobenko, Luiz R. & Marin, Fábio R., 2019. "Soybean irrigation requirements and canopy-atmosphere coupling in Southern Brazil," Agricultural Water Management, Elsevier, vol. 218(C), pages 1-7.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei, Zheng & Paredes, Paula & Liu, Yu & Chi, Wei Wei & Pereira, Luis S., 2015. "Modelling transpiration, soil evaporation and yield prediction of soybean in North China Plain," Agricultural Water Management, Elsevier, vol. 147(C), pages 43-53.
    2. Candogan, Burak Nazmi & Sincik, Mehmet & Buyukcangaz, Hakan & Demirtas, Cigdem & Goksoy, Abdurrahim Tanju & Yazgan, Senih, 2013. "Yield, quality and crop water stress index relationships for deficit-irrigated soybean [Glycine max (L.) Merr.] in sub-humid climatic conditions," Agricultural Water Management, Elsevier, vol. 118(C), pages 113-121.
    3. Zhang, Bangbang & Feng, Gary & Kong, Xiangbin & Lal, Rattan & Ouyang, Ying & Adeli, Ardeshir & Jenkins, Johnie N., 2016. "Simulating yield potential by irrigation and yield gap of rainfed soybean using APEX model in a humid region," Agricultural Water Management, Elsevier, vol. 177(C), pages 440-453.
    4. Zhang, Bangbang & Feng, Gary & Ahuja, Lajpat R. & Kong, Xiangbin & Ouyang, Ying & Adeli, Ardeshir & Jenkins, Johnie N., 2018. "Soybean crop-water production functions in a humid region across years and soils determined with APEX model," Agricultural Water Management, Elsevier, vol. 204(C), pages 180-191.
    5. Cao, Jingjing & Tan, Junwei & Cui, Yuanlai & Luo, Yufeng, 2019. "Irrigation scheduling of paddy rice using short-term weather forecast data," Agricultural Water Management, Elsevier, vol. 213(C), pages 714-723.
    6. Muniandy, Josilva M. & Yusop, Zulkifli & Askari, Muhamad, 2016. "Evaluation of reference evapotranspiration models and determination of crop coefficient for Momordica charantia and Capsicum annuum," Agricultural Water Management, Elsevier, vol. 169(C), pages 77-89.
    7. O'Shaughnessy, S.A. & Evett, S.R. & Colaizzi, P.D. & Howell, T.A., 2011. "Using radiation thermography and thermometry to evaluate crop water stress in soybean and cotton," Agricultural Water Management, Elsevier, vol. 98(10), pages 1523-1535, August.
    8. Karam, F. & Saliba, R. & Skaf, S. & Breidy, J. & Rouphael, Y. & Balendonck, J., 2011. "Yield and water use of eggplants (Solanum melongena L.) under full and deficit irrigation regimes," Agricultural Water Management, Elsevier, vol. 98(8), pages 1307-1316, May.
    9. Karam, F. & Amacha, N. & Fahed, S. & EL Asmar, T. & Domínguez, A., 2014. "Response of potato to full and deficit irrigation under semiarid climate: Agronomic and economic implications," Agricultural Water Management, Elsevier, vol. 142(C), pages 144-151.
    10. da Silva, Evandro H.F.M. & Gonçalves, Alexandre O. & Pereira, Rodolfo A. & Fattori Júnior, Izael M. & Sobenko, Luiz R. & Marin, Fábio R., 2019. "Soybean irrigation requirements and canopy-atmosphere coupling in Southern Brazil," Agricultural Water Management, Elsevier, vol. 218(C), pages 1-7.
    11. Montoya, F. & García, C. & Pintos, F. & Otero, A., 2017. "Effects of irrigation regime on the growth and yield of irrigated soybean in temperate humid climatic conditions," Agricultural Water Management, Elsevier, vol. 193(C), pages 30-45.
    12. Sharma, Vasudha & Irmak, Suat, 2021. "Comparative analyses of variable and fixed rate irrigation and nitrogen management for maize in different soil types: Part II. Growth, grain yield, evapotranspiration, production functions and water p," Agricultural Water Management, Elsevier, vol. 246(C).
    13. Li, Xiumei & Zhao, Weixia & Li, Jiusheng & Li, Yanfeng, 2021. "Effects of irrigation strategies and soil properties on the characteristics of deep percolation and crop water requirements for a variable rate irrigation system," Agricultural Water Management, Elsevier, vol. 257(C).
    14. Adeboye, Omotayo B. & Schultz, Bart & Adekalu, Kenneth O. & Prasad, Krishna C., 2019. "Performance evaluation of AquaCrop in simulating soil water storage, yield, and water productivity of rainfed soybeans (Glycine max L. merr) in Ile-Ife, Nigeria," Agricultural Water Management, Elsevier, vol. 213(C), pages 1130-1146.
    15. Sharma, Vasudha & Irmak, Suat, 2020. "Economic comparisons of variable rate irrigation and fertigation with fixed (uniform) rate irrigation and fertigation and pre-plant fertilizer management for maize in three soils," Agricultural Water Management, Elsevier, vol. 240(C).
    16. Gerçek, Sinan & Demirkaya, Mustafa, 2021. "Impact of colored water pillows on yield and water productivity of pepper under greenhouse conditions," Agricultural Water Management, Elsevier, vol. 250(C).
    17. Gerçek, Sinan & Demirkaya, Mustafa & Işik, Doğan, 2017. "Water pillow irrigation versus drip irrigation with regard to growth and yield of tomato grown under greenhouse conditions in a semi-arid region," Agricultural Water Management, Elsevier, vol. 180(PA), pages 172-177.
    18. Dogan, E., 2019. "Effect of supplemental irrigation on vetch yield components," Agricultural Water Management, Elsevier, vol. 213(C), pages 978-982.
    19. Singh, Shardendu K. & Hoyos-Villegas, Valerio & Houx, James H. & Fritschi, Felix B., 2012. "Influence of artificially restricted rooting depth on soybean yield and seed quality," Agricultural Water Management, Elsevier, vol. 105(C), pages 38-47.
    20. Mhawej, Mario & Caiserman, Arnaud & Nasrallah, Ali & Dawi, Ali & Bachour, Roula & Faour, Ghaleb, 2020. "Automated evapotranspiration retrieval model with missing soil-related datasets: The proposal of SEBALI," Agricultural Water Management, Elsevier, vol. 229(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:97:y:2010:i:7:p:981-987. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.