IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v210y2018icp224-231.html
   My bibliography  Save this article

Effect of irrigation regime on yield, harvest index and water productivity of soybean grown under different precipitation conditions in a temperate environment

Author

Listed:
  • Gajić, Boško
  • Kresović, Branka
  • Tapanarova, Angelina
  • Životić, Ljubomir
  • Todorović, Mladen

Abstract

In temperate climatic regions, agricultural production depends on precipitation amount and its distribution during the growing season. A 3-year field study was conducted to investigate the effects of different irrigation regimes on yield parameters and water productivity of sprinkler-irrigated soybean [Glycine max (L.) Merr.], grown under wet, semi-dry and dry conditions in a temperate environment. Four irrigation levels were applied: full irrigation (I100), 65% and 40% of full irrigation (I65 and I40) and non-irrigated control (I0). On average, the I0 treatment resulted in the highest harvest index (HI) and I100 produced the lowest HI. A significant quadratic correlation between seed yield and crop water use was observed in dry and semi-dry year. The irrigation regime significantly influenced seed yield and water use. I65 treatment produced the highest seed yield (3.69 t ha–1) and showed the highest water productivity (WP) (0.90 kg m–3) and irrigation WP (1.08 kg m–3). The present study indicated that irrigation is necessary for soybean cultivation in semi-dry and dry years i.e., when seasonal precipitation is lower than about 300 mm. In wet years, with a favourable amount and distribution of precipitation during the growing season, yields are similar to those achieved with irrigation and high ET values of soybean are attributable to increased evaporation.

Suggested Citation

  • Gajić, Boško & Kresović, Branka & Tapanarova, Angelina & Životić, Ljubomir & Todorović, Mladen, 2018. "Effect of irrigation regime on yield, harvest index and water productivity of soybean grown under different precipitation conditions in a temperate environment," Agricultural Water Management, Elsevier, vol. 210(C), pages 224-231.
  • Handle: RePEc:eee:agiwat:v:210:y:2018:i:c:p:224-231
    DOI: 10.1016/j.agwat.2018.08.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377418303147
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2018.08.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Garcia y Garcia, A. & Persson, T. & Guerra, L.C. & Hoogenboom, G., 2010. "Response of soybean genotypes to different irrigation regimes in a humid region of the southeastern USA," Agricultural Water Management, Elsevier, vol. 97(7), pages 981-987, July.
    2. Karam, Fadi & Masaad, Randa & Sfeir, Therese & Mounzer, Oussama & Rouphael, Youssef, 2005. "Evapotranspiration and seed yield of field grown soybean under deficit irrigation conditions," Agricultural Water Management, Elsevier, vol. 75(3), pages 226-244, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mengya Hua & Yuyan Zhou & Cailian Hao & Qiang Yan, 2023. "Analyzing the Drivers of Agricultural Irrigation Water Demand in Water-Scarce Areas: A Comparative Study of Two Regions with Different Levels of Irrigated Agricultural Development," Sustainability, MDPI, vol. 15(20), pages 1-14, October.
    2. Tianli Wang & Yanji Ma & Siqi Luo, 2023. "Spatiotemporal Evolution and Influencing Factors of Soybean Production in Heilongjiang Province, China," Land, MDPI, vol. 12(12), pages 1-29, November.
    3. Mohtashami, Raham & Movahhedi Dehnavi, Mohsen & Balouchi, Hamidreza & Faraji, Hooshang, 2020. "Improving yield, oil content and water productivity of dryland canola by supplementary irrigation and selenium spraying," Agricultural Water Management, Elsevier, vol. 232(C).
    4. Liao, Renkuan & Zhang, Shirui & Zhang, Xin & Wang, Mingfei & Wu, Huarui & Zhangzhong, Lili, 2021. "Development of smart irrigation systems based on real-time soil moisture data in a greenhouse: Proof of concept," Agricultural Water Management, Elsevier, vol. 245(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. da Silva, Evandro H.F.M. & Gonçalves, Alexandre O. & Pereira, Rodolfo A. & Fattori Júnior, Izael M. & Sobenko, Luiz R. & Marin, Fábio R., 2019. "Soybean irrigation requirements and canopy-atmosphere coupling in Southern Brazil," Agricultural Water Management, Elsevier, vol. 218(C), pages 1-7.
    2. Zhang, Bangbang & Feng, Gary & Kong, Xiangbin & Lal, Rattan & Ouyang, Ying & Adeli, Ardeshir & Jenkins, Johnie N., 2016. "Simulating yield potential by irrigation and yield gap of rainfed soybean using APEX model in a humid region," Agricultural Water Management, Elsevier, vol. 177(C), pages 440-453.
    3. Zhang, Bangbang & Feng, Gary & Ahuja, Lajpat R. & Kong, Xiangbin & Ouyang, Ying & Adeli, Ardeshir & Jenkins, Johnie N., 2018. "Soybean crop-water production functions in a humid region across years and soils determined with APEX model," Agricultural Water Management, Elsevier, vol. 204(C), pages 180-191.
    4. Wei, Zheng & Paredes, Paula & Liu, Yu & Chi, Wei Wei & Pereira, Luis S., 2015. "Modelling transpiration, soil evaporation and yield prediction of soybean in North China Plain," Agricultural Water Management, Elsevier, vol. 147(C), pages 43-53.
    5. Muniandy, Josilva M. & Yusop, Zulkifli & Askari, Muhamad, 2016. "Evaluation of reference evapotranspiration models and determination of crop coefficient for Momordica charantia and Capsicum annuum," Agricultural Water Management, Elsevier, vol. 169(C), pages 77-89.
    6. Sandhu, Rupinder & Irmak, Suat, 2022. "Effects of subsurface drip-irrigated soybean seeding rates on grain yield, evapotranspiration and water productivity under limited and full irrigation and rainfed conditions," Agricultural Water Management, Elsevier, vol. 267(C).
    7. Karam, F. & Saliba, R. & Skaf, S. & Breidy, J. & Rouphael, Y. & Balendonck, J., 2011. "Yield and water use of eggplants (Solanum melongena L.) under full and deficit irrigation regimes," Agricultural Water Management, Elsevier, vol. 98(8), pages 1307-1316, May.
    8. Karam, F. & Amacha, N. & Fahed, S. & EL Asmar, T. & Domínguez, A., 2014. "Response of potato to full and deficit irrigation under semiarid climate: Agronomic and economic implications," Agricultural Water Management, Elsevier, vol. 142(C), pages 144-151.
    9. Montoya, F. & García, C. & Pintos, F. & Otero, A., 2017. "Effects of irrigation regime on the growth and yield of irrigated soybean in temperate humid climatic conditions," Agricultural Water Management, Elsevier, vol. 193(C), pages 30-45.
    10. Garcia y Garcia, A. & Persson, T. & Guerra, L.C. & Hoogenboom, G., 2010. "Response of soybean genotypes to different irrigation regimes in a humid region of the southeastern USA," Agricultural Water Management, Elsevier, vol. 97(7), pages 981-987, July.
    11. Negm, Lamyaa M. & Youssef, Mohamed A. & Jaynes, Dan B., 2017. "Evaluation of DRAINMOD-DSSAT simulated effects of controlled drainage on crop yield, water balance, and water quality for a corn-soybean cropping system in central Iowa," Agricultural Water Management, Elsevier, vol. 187(C), pages 57-68.
    12. Amer, Kamal H., 2011. "Effect of irrigation method and quantity on squash yield and quality," Agricultural Water Management, Elsevier, vol. 98(8), pages 1197-1206, May.
    13. Candogan, Burak Nazmi & Sincik, Mehmet & Buyukcangaz, Hakan & Demirtas, Cigdem & Goksoy, Abdurrahim Tanju & Yazgan, Senih, 2013. "Yield, quality and crop water stress index relationships for deficit-irrigated soybean [Glycine max (L.) Merr.] in sub-humid climatic conditions," Agricultural Water Management, Elsevier, vol. 118(C), pages 113-121.
    14. Dogan, E., 2019. "Effect of supplemental irrigation on vetch yield components," Agricultural Water Management, Elsevier, vol. 213(C), pages 978-982.
    15. Arora, V.K. & Singh, C.B. & Sidhu, A.S. & Thind, S.S., 2011. "Irrigation, tillage and mulching effects on soybean yield and water productivity in relation to soil texture," Agricultural Water Management, Elsevier, vol. 98(4), pages 563-568, February.
    16. Mhawej, Mario & Caiserman, Arnaud & Nasrallah, Ali & Dawi, Ali & Bachour, Roula & Faour, Ghaleb, 2020. "Automated evapotranspiration retrieval model with missing soil-related datasets: The proposal of SEBALI," Agricultural Water Management, Elsevier, vol. 229(C).
    17. Dogan, E. & Copur, O. & Kahraman, A. & Kirnak, H. & Guldur, M.E., 2011. "Supplemental irrigation effect on canola yield components under semiarid climatic conditions," Agricultural Water Management, Elsevier, vol. 98(9), pages 1403-1408, July.
    18. Moursi, Hossam & Youssef, Mohamed A. & Chescheir, George M., 2022. "Development and application of DRAINMOD model for simulating crop yield and water conservation benefits of drainage water recycling," Agricultural Water Management, Elsevier, vol. 266(C).
    19. Geerts, Sam & Raes, Dirk, 2009. "Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas," Agricultural Water Management, Elsevier, vol. 96(9), pages 1275-1284, September.
    20. Karam, Fadi & Lahoud, Rafic & Masaad, Randa & Kabalan, Rabih & Breidi, Joelle & Chalita, Claude & Rouphael, Youssef, 2007. "Evapotranspiration, seed yield and water use efficiency of drip irrigated sunflower under full and deficit irrigation conditions," Agricultural Water Management, Elsevier, vol. 90(3), pages 213-223, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:210:y:2018:i:c:p:224-231. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.