IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v313y2025ics037837742500191x.html
   My bibliography  Save this article

Surface-subsurface modeling of water dynamics in drained and farmed wetlands in the prairie pothole region

Author

Listed:
  • Gomez, Alejandro
  • Arenas, Antonio
  • Schilling, Keith E.

Abstract

A hydrologic model was developed to investigate the surface ponding dynamics in a pothole complex in Iowa's prairie pothole region. This study includes a description of the ponding process, the identification of the main drivers of surface ponding, and an analysis of ponding depth and duration. The modeling was based on Saint-Venant and Richard’s equations to calculate overland and groundwater flows, respectively, using a coupled surface-subsurface approach. The model simulated eleven years (2011–2021) and was calibrated and validated using three datasets: water table measurements, surface ponding estimated from satellite images, and satellite-based estimates of evapotranspiration. Based on the simulations, the ponding process starts with direct precipitation and overland flow moving toward the pothole. Once water reaches the pothole, it infiltrates and percolates causing the water table to rise until it eventually reaches the ground surface. Surface ponding begins when the soil beneath the pothole is fully saturated and continues until the excess water is removed through evapotranspiration and the tile drainage network. Results indicate that surface ponding is primarily driven by overland flow, with 64.1 % from direct precipitation and 35.9 % from runoff, while groundwater rise has a negligible contribution. The model results indicate an average infiltration rate of 25 mm/day and average ponding depth and duration of 6.8 cm and 3.6 days, respectively. Analysis of the simulated ponding duration reveals a reduction in crop yield in 2 of the 11 years, with total crop loss occurring in 6 of those years.

Suggested Citation

  • Gomez, Alejandro & Arenas, Antonio & Schilling, Keith E., 2025. "Surface-subsurface modeling of water dynamics in drained and farmed wetlands in the prairie pothole region," Agricultural Water Management, Elsevier, vol. 313(C).
  • Handle: RePEc:eee:agiwat:v:313:y:2025:i:c:s037837742500191x
    DOI: 10.1016/j.agwat.2025.109477
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037837742500191X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2025.109477?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Shoaib Saleem & Jana Levison & Beth Parker & Ralph Martin & Elisha Persaud, 2020. "Impacts of Climate Change and Different Crop Rotation Scenarios on Groundwater Nitrate Concentrations in a Sandy Aquifer," Sustainability, MDPI, vol. 12(3), pages 1-25, February.
    2. Singh, R. & Helmers, M.J. & Qi, Zhiming, 2006. "Calibration and validation of DRAINMOD to design subsurface drainage systems for Iowa's tile landscapes," Agricultural Water Management, Elsevier, vol. 85(3), pages 221-232, October.
    3. Gascoigne, William R. & Hoag, Dana & Koontz, Lynne & Tangen, Brian A. & Shaffer, Terry L. & Gleason, Robert A., 2011. "Valuing ecosystem and economic services across land-use scenarios in the Prairie Pothole Region of the Dakotas, USA," Ecological Economics, Elsevier, vol. 70(10), pages 1715-1725, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kerstin K Zander & Gillian B Ainsworth & Jürgen Meyerhoff & Stephen T Garnett, 2014. "Threatened Bird Valuation in Australia," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-9, June.
    2. Negm, L.M. & Youssef, M.A. & Skaggs, R.W. & Chescheir, G.M. & Jones, J., 2014. "DRAINMOD–DSSAT model for simulating hydrology, soil carbon and nitrogen dynamics, and crop growth for drained crop land," Agricultural Water Management, Elsevier, vol. 137(C), pages 30-45.
    3. Matinzadeh, Mohammad Mehdi & Abedi Koupai, Jahangir & Sadeghi-Lari, Adnan & Nozari, Hamed & Shayannejad, Mohammad, 2017. "Development of an innovative integrated model for the simulation of nitrogen dynamics in farmlands with drainage systems using the system dynamics approach," Ecological Modelling, Elsevier, vol. 347(C), pages 11-28.
    4. Qi, Zhiming & Singh, Ranvir & Helmers, Matthew J. & Zhou, Xiaobo, 2015. "Evaluating the performance of DRAINMOD using soil hydraulic parameters derived by various methods," Agricultural Water Management, Elsevier, vol. 155(C), pages 48-52.
    5. Turunen, M. & Warsta, L. & Paasonen-Kivekäs, M. & Nurminen, J. & Myllys, M. & Alakukku, L. & Äijö, H. & Puustinen, M. & Koivusalo, H., 2013. "Modeling water balance and effects of different subsurface drainage methods on water outflow components in a clayey agricultural field in boreal conditions," Agricultural Water Management, Elsevier, vol. 121(C), pages 135-148.
    6. Richardson, Leslie & Loomis, John & Kroeger, Timm & Casey, Frank, 2015. "The role of benefit transfer in ecosystem service valuation," Ecological Economics, Elsevier, vol. 115(C), pages 51-58.
    7. Xiaoya Ma & Xiang Zhao, 2015. "Land Use Allocation Based on a Multi-Objective Artificial Immune Optimization Model: An Application in Anlu County, China," Sustainability, MDPI, vol. 7(11), pages 1-20, November.
    8. Ida Kubiszewski & Sharolyn J. Anderson & Robert Costanza & Paul C. Sutton, 2016. "The Future of Ecosystem Services in Asia and the Pacific," Asia and the Pacific Policy Studies, Wiley Blackwell, vol. 3(3), pages 389-404, September.
    9. Raviv, Orna & Shiri, Zemah-Shamir & Ido, Izhaki & Alon, Lotan, 2021. "The effect of wildfire and land-cover changes on the economic value of ecosystem services in Mount Carmel Biosphere Reserve, Israel," Ecosystem Services, Elsevier, vol. 49(C).
    10. Jiang, Yao & Xu, Xu & Huang, Quanzhong & Huo, Zailin & Huang, Guanhua, 2016. "Optimizing regional irrigation water use by integrating a two-level optimization model and an agro-hydrological model," Agricultural Water Management, Elsevier, vol. 178(C), pages 76-88.
    11. Wang, Tong & Luri, Moses & Janssen, Larry & Hennessy, David A. & Feng, Hongli & Wimberly, Michael C. & Arora, Gaurav, 2017. "Determinants of Motives for Land Use Decisions at the Margins of the Corn Belt," Ecological Economics, Elsevier, vol. 134(C), pages 227-237.
    12. Qi, Zhiming & Helmers, Matthew J. & Kaleita, Amy L., 2011. "Soil water dynamics under various agricultural land covers on a subsurface drained field in north-central Iowa, USA," Agricultural Water Management, Elsevier, vol. 98(4), pages 665-674, February.
    13. Long Qian & Yunying Luo & Kai Duan, 2025. "A Simple Drainage-Friendly Approach for Estimating Waterlogging Impacts on Cotton Yields Regarding Accompanying High Temperatures," Sustainability, MDPI, vol. 17(2), pages 1-30, January.
    14. Yanru Wang & Xiaojuan Zhang & Peihao Peng, 2021. "Spatio-Temporal Changes of Land-Use/Land Cover Change and the Effects on Ecosystem Service Values in Derong County, China, from 1992–2018," Sustainability, MDPI, vol. 13(2), pages 1-16, January.
    15. Ghane, Ehsan & Askar, Manal H., 2021. "Predicting the effect of drain depth on profitability and hydrology of subsurface drainage systems across the eastern USA," Agricultural Water Management, Elsevier, vol. 258(C).
    16. Philip J. Gerla & Meredith W. Cornett & Jason D. Ekstein & Marissa A. Ahlering, 2012. "Talking Big: Lessons Learned from a 9000 Hectare Restoration in the Northern Tallgrass Prairie," Sustainability, MDPI, vol. 4(11), pages 1-22, November.
    17. Richter, Franziska & Jan, Pierrick & El Benni, Nadja & Lüscher, Andreas & Buchmann, Nina & Klaus, Valentin H., 2021. "A guide to assess and value ecosystem services of grasslands," Ecosystem Services, Elsevier, vol. 52(C).
    18. Jarmila Makovníková & Stanislav Kološta & Filip Flaška & Boris Pálka, 2023. "Potential of Regulating Ecosystem Services in Relation to Natural Capital in Model Regions of Slovakia," Sustainability, MDPI, vol. 15(2), pages 1-22, January.
    19. Nijhum, Farzana & Westbrook, Cherie & Noble, Bram & Belcher, Ken & Lloyd-Smith, Patrick, 2021. "Evaluation of alternative land-use scenarios using an ecosystem services-based strategic environmental assessment approach," Land Use Policy, Elsevier, vol. 108(C).
    20. Hauck, Jennifer & Görg, Christoph & Varjopuro, Riku & Ratamäki, Outi & Maes, Joachim & Wittmer, Heidi & Jax, Kurt, 2013. "“Maps have an air of authority”: Potential benefits and challenges of ecosystem service maps at different levels of decision making," Ecosystem Services, Elsevier, vol. 4(C), pages 25-32.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:313:y:2025:i:c:s037837742500191x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.