IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v306y2024ics0378377424005134.html
   My bibliography  Save this article

Drought tolerance mechanisms and water flux effects of oil peony in Chinese Loess Plateau

Author

Listed:
  • Wang, Yiyi
  • Li, Pangen
  • Huang, Qiangbing
  • Wang, Zhenhong

Abstract

The Chinese Loess Plateau (CLP) is a degraded ecosystem that has not been fully restored, characterized by perennial drought and erosion. Oil peony is an important plant that can tolerate drought and produce abundant seeds for high-quality edible oil. As a result, it will be widely planted as part of a vegetation restoration project to control soil erosion in the CLP and increase farmers' income. However, the drought-resistant mechanism and hydrological effect of oil peony remain unclear. In this study, stable hydrogen and oxygen isotopes (SHOI) testing, which is dominant in identifying potential plant water use sources, and Hydrus-1d software, which is excellent in quantifying vegetation water balance, were combined to quantify the contribution of soil water, groundwater, and precipitation to plant growth, as well as the evapotranspiration and infiltration flux of oil peony in mature and juvenile stages. The results showed that juvenile oil peonies mainly used 0–20 cm surface soil water in spring, and their water utilization rate (61.8 %) was lower than that of mature oil peonies (70.7 %). In summer and autumn, when the water content of surface soil mainly from precipitation was high, oil peony tended to absorb water from deep soil layers. The contribution rate of soil water in dry soil layers was much higher than that in water-sufficient soil layers. The modelling flux of water absorbed by peony in different soil layers was consistent with the direct tests of SHOI. Based on modelling, water loss due to evaporation from mature oil peony was smaller than that from juvenile peony, but the infiltration of water to deep soil layers in mature peony land was larger than that in juvenile peony land. We found that oil peony prefers to use water in dry soil layers, explaining its drought tolerance characteristics. The water use strategy of mature oil peony was more diverse than that of juvenile ones. This work reveals the drought tolerance strategy of oil peony and its hydrological effects in promoting more water conservation in the soil.

Suggested Citation

  • Wang, Yiyi & Li, Pangen & Huang, Qiangbing & Wang, Zhenhong, 2024. "Drought tolerance mechanisms and water flux effects of oil peony in Chinese Loess Plateau," Agricultural Water Management, Elsevier, vol. 306(C).
  • Handle: RePEc:eee:agiwat:v:306:y:2024:i:c:s0378377424005134
    DOI: 10.1016/j.agwat.2024.109177
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377424005134
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2024.109177?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Zhao, Tianxing & Zhu, Yan & Ye, Ming & Yang, Jinzhong & Jia, Biao & Mao, Wei & Wu, Jingwei, 2022. "A new approach for estimating spatial-temporal phreatic evapotranspiration at a regional scale using NDVI and water table depth measurements," Agricultural Water Management, Elsevier, vol. 264(C).
    2. Wang, Peng & Song, Xianfang & Han, Dongmei & Zhang, Yinghua & Liu, Xin, 2010. "A study of root water uptake of crops indicated by hydrogen and oxygen stable isotopes: A case in Shanxi Province, China," Agricultural Water Management, Elsevier, vol. 97(3), pages 475-482, March.
    3. Xi, Benye & Bloomberg, Mark & Watt, Michael S. & Wang, Ye & Jia, Liming, 2016. "Modeling growth response to soil water availability simulated by HYDRUS for a mature triploid Populus tomentosa plantation located on the North China Plain," Agricultural Water Management, Elsevier, vol. 176(C), pages 243-254.
    4. Zhang, Yuehong & Li, Xianyue & Šimůnek, Jiří & Shi, Haibin & Chen, Ning & Hu, Qi, 2023. "Quantifying water and salt movement in a soil-plant system of a corn field using HYDRUS (2D/3D) and the stable isotope method," Agricultural Water Management, Elsevier, vol. 288(C).
    5. Burgess, Stephen S. O. & Adams, Mark A. & Turner, Neil C. & Ward, Brett, 2000. "Characterisation of hydrogen isotope profiles in an agroforestry system: implications for tracing water sources of trees," Agricultural Water Management, Elsevier, vol. 45(3), pages 229-241, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Zhen & Ma, Feng-yun & Hu, Tong-xi & Zhao, Kai-guang & Gao, Tian-ping & Zhao, Hong-xiang & Ning, Tang-yuan, 2020. "Using stable isotopes to quantify water uptake from different soil layers and water use efficiency of wheat under long-term tillage and straw return practices," Agricultural Water Management, Elsevier, vol. 229(C).
    2. Zhang, Yongyong & Wu, Shaoxiong & Kang, Wenrong & Tian, Zihan, 2022. "Multiple sources characteristics of root water uptake of crop under oasis farmlands in hyper-arid regions," Agricultural Water Management, Elsevier, vol. 271(C).
    3. Giulio Sperandio & Mauro Pagano & Andrea Acampora & Vincenzo Civitarese & Carla Cedrola & Paolo Mattei & Roberto Tomasone, 2022. "Deficit Irrigation for Efficiency and Water Saving in Poplar Plantations," Sustainability, MDPI, vol. 14(21), pages 1-16, October.
    4. Hou, Chenli & Tian, Delong & Xu, Bing & Ren, Jie & Hao, Lei & Chen, Ning & Li, Xianyue, 2021. "Use of the stable oxygen isotope method to evaluate the difference in water consumption and utilization strategy between alfalfa and maize fields in an arid shallow groundwater area," Agricultural Water Management, Elsevier, vol. 256(C).
    5. Wang, Peng & Song, Xianfang & Han, Dongmei & Zhang, Yinhua & Zhang, Bing, 2012. "Determination of evaporation, transpiration and deep percolation of summer corn and winter wheat after irrigation," Agricultural Water Management, Elsevier, vol. 105(C), pages 32-37.
    6. Liu, Kai & Liao, Huan & Hao, Haibo & Hou, Zhenan, 2024. "Water and nitrogen supply at spatially distinct locations improves cotton water productivity and nitrogen use efficiency and yield under drip irrigation," Agricultural Water Management, Elsevier, vol. 296(C).
    7. Zhang, Guangxin & Meng, Wenhui & Pan, Wenhui & Han, Juan & Liao, Yuncheng, 2022. "Effect of soil water content changes caused by ridge-furrow plastic film mulching on the root distribution and water use pattern of spring maize in the Loess Plateau," Agricultural Water Management, Elsevier, vol. 261(C).
    8. Ong, C. K. & Wilson, J. & Deans, J. D. & Mulayta, J. & Raussen, T. & Wajja-Musukwe, N., 2002. "Tree-crop interactions: manipulation of water use and root function," Agricultural Water Management, Elsevier, vol. 53(1-3), pages 171-186, February.
    9. Aouade, G. & Ezzahar, J. & Amenzou, N. & Er-Raki, S. & Benkaddour, A. & Khabba, S. & Jarlan, L., 2016. "Combining stable isotopes, Eddy Covariance system and meteorological measurements for partitioning evapotranspiration, of winter wheat, into soil evaporation and plant transpiration in a semi-arid reg," Agricultural Water Management, Elsevier, vol. 177(C), pages 181-192.
    10. Liao, Renkuan & Yang, Peiling & Zhu, Yuanhao & Wu, Wenyong & Ren, Shumei, 2018. "Modeling soil water flow and quantification of root water extraction from different soil layers under multi-chemicals application in dry land field," Agricultural Water Management, Elsevier, vol. 203(C), pages 75-86.
    11. He, Qinsi & Li, Sien & Kang, Shaozhong & Yang, Hanbo & Qin, Shujing, 2018. "Simulation of water balance in a maize field under film-mulching drip irrigation," Agricultural Water Management, Elsevier, vol. 210(C), pages 252-260.
    12. Rezzouk, Fatima Zahra & Gracia-Romero, Adrian & Segarra, Joel & Kefauver, Shawn C. & Aparicio, Nieves & Serret, Maria Dolors & Araus, José Luis, 2023. "Root traits and resource acquisition determining durum wheat performance under Mediterranean conditions: An integrative approach," Agricultural Water Management, Elsevier, vol. 288(C).
    13. Zhou, Hong & Zhao, Wen zhi, 2019. "Modeling soil water balance and irrigation strategies in a flood-irrigated wheat-maize rotation system. A case in dry climate, China," Agricultural Water Management, Elsevier, vol. 221(C), pages 286-302.
    14. Li, Pingfeng & Cao, Xiaoqing & Tan, Huang & Wang, Jiahang & Ren, Shumei & Yang, Peiling, 2020. "Studies on water uptake and heat status of cherry root under water-saving measures," Agricultural Water Management, Elsevier, vol. 242(C).
    15. Di, Nan & Yang, Shangjin & Liu, Yang & Fan, Yunxiang & Duan, Jie & Nadezhdina, Nadezhda & Li, Ximeng & Xi, Benye, 2022. "Soil-moisture-dependent nocturnal water use strategy and its responses to meteorological factors in a seasonal-arid poplar plantation," Agricultural Water Management, Elsevier, vol. 274(C).
    16. Wu, Yali & Ma, Ying & Niu, Yuan & Song, Xianfang & Yu, Hui & Lan, Wei & Kang, Xiaoqi, 2021. "Warming changed seasonal water uptake patterns of summer maize," Agricultural Water Management, Elsevier, vol. 258(C).
    17. Zhang, Yuwen & Ding, Changjun & Liu, Yan & Li, Shan & Li, Ximeng & Xi, Benye & Duan, Jie, 2023. "Xylem anatomical and hydraulic traits vary within crown but not respond to water and nitrogen addition in Populus tomentosa," Agricultural Water Management, Elsevier, vol. 278(C).
    18. He, Yuelin & Xi, Benye & Li, Guangde & Wang, Ye & Jia, Liming & Zhao, Dehai, 2021. "Influence of drip irrigation, nitrogen fertigation, and precipitation on soil water and nitrogen distribution, tree seasonal growth and nitrogen uptake in young triploid poplar (Populus tomentosa) pla," Agricultural Water Management, Elsevier, vol. 243(C).
    19. Wang, Jian & Tian, Zuokun & Yang, Ting & Li, Xuechun & He, Qiu & Wang, Duo & Chen, Rui, 2024. "Characteristics of limited flow and soil water infiltration boundary of a subsurface drip irrigation emitter in silty loam soil," Agricultural Water Management, Elsevier, vol. 291(C).
    20. Li, Doudou & Li, Ximeng & Xi, Benye & Hernandez-Santana, Virginia, 2022. "Evaluation of method to model stomatal conductance and its use to assess biomass increase in poplar trees," Agricultural Water Management, Elsevier, vol. 259(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:306:y:2024:i:c:s0378377424005134. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.