IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v296y2024ics037837742400146x.html
   My bibliography  Save this article

Biological factor controls the variations in water use efficiency of an alpine meadow during the growing season in a permafrost region of the Qinghai-Tibet Plateau

Author

Listed:
  • Hu, Zhaoyong
  • Wang, Genxu
  • Sun, Xiangyang
  • Huang, Kewei
  • Song, Chunlin
  • Li, Yang
  • Sun, Shouqin
  • Sun, Juying
  • Lin, Shan

Abstract

The alpine meadow located in permafrost is crucial for ecosystem services of the Qinghai-Tibet Plateau (QTP), which is experiencing precipitation changes in most areas. Water use efficiency (WUE) can quantify the inextricable link between carbon assimilation and water loss in terrestrial ecosystems. However, the temporal variations in WUE and its driving factors across different precipitation years still need to be clarified in alpine meadows on the QTP. Therefore, 4-year carbon and water flux data were used to elucidate the mechanisms behind seasonal and interannual variations in WUE of an alpine meadow in the hinterland of the QTP. Noticeable seasonal variations in WUE were observed during the studied period, with the highest value (1.38±0.38 g C kg−1 H2O) occurring during the mid-growing season (MG, starting around 166 DOY), approximately 2 and 3 times those during the late-growing season (LG, starting around 256 DOY and ending around 282 DOY) and early-growing season (EG, starting around 140 DOY), respectively. Standardized total effects in the structural equation models from NDVI to WUE were highest in all seasons, indicating that NDVI was the primary controlling factor for daily WUE variations. Additionally, energy factors (temperature and solar radiation) also significantly influenced daily WUE variations. The highest mean daily WUE (1.23±0.65 g C kg−1 H2O) was in the mild dry year (2016). However, no significant differences were noted in mean daily WUE in severe dry (2015) and wet (2019) years compared to the normal year (2020) during GS. This can be attributed to the varying sensitivity of carbon assimilation and water loss to biotic and abiotic changes across divergent precipitation years, with WUE exhibiting a greater sensitive to gross primary productivity than to evapotranspiration. These findings suggest that alpine meadows have endured in its harsh environment and have adapted to climatic fluctuations through long-term evolution.

Suggested Citation

  • Hu, Zhaoyong & Wang, Genxu & Sun, Xiangyang & Huang, Kewei & Song, Chunlin & Li, Yang & Sun, Shouqin & Sun, Juying & Lin, Shan, 2024. "Biological factor controls the variations in water use efficiency of an alpine meadow during the growing season in a permafrost region of the Qinghai-Tibet Plateau," Agricultural Water Management, Elsevier, vol. 296(C).
  • Handle: RePEc:eee:agiwat:v:296:y:2024:i:c:s037837742400146x
    DOI: 10.1016/j.agwat.2024.108811
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037837742400146X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2024.108811?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Manuel Helbig & James Michael Waddington & Pavel Alekseychik & Brian D. Amiro & Mika Aurela & Alan G. Barr & T. Andrew Black & Peter D. Blanken & Sean K. Carey & Jiquan Chen & Jinshu Chi & Ankur R. De, 2020. "Increasing contribution of peatlands to boreal evapotranspiration in a warming climate," Nature Climate Change, Nature, vol. 10(6), pages 555-560, June.
    2. Alistair W. R. Seddon & Marc Macias-Fauria & Peter R. Long & David Benz & Kathy J. Willis, 2016. "Sensitivity of global terrestrial ecosystems to climate variability," Nature, Nature, vol. 531(7593), pages 229-232, March.
    3. Lin, Shan & Wang, Genxu & Hu, Zhaoyong & Sun, Xiangyang & Song, Chunlin & Huang, Kewei & Sun, Juying & Yang, Yi, 2023. "Contrasting response of growing season water use efficiency to precipitation changes between alpine meadows and alpine steppes over the Tibetan Plateau," Agricultural Water Management, Elsevier, vol. 289(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jacqueline Oehri & Gabriela Schaepman-Strub & Jin-Soo Kim & Raleigh Grysko & Heather Kropp & Inge Grünberg & Vitalii Zemlianskii & Oliver Sonnentag & Eugénie S. Euskirchen & Merin Reji Chacko & Giovan, 2022. "Vegetation type is an important predictor of the arctic summer land surface energy budget," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Mengmeng Gao & Nan Yang & Qiong Liu, 2024. "What Drives Vegetation Evolution in the Middle Reaches of the Yellow River Basin, Climate Change or Human Activities?," Sustainability, MDPI, vol. 16(22), pages 1-21, November.
    3. Shulin Chen & Zhenghao Zhu & Xiaotong Liu & Li Yang, 2022. "Variation in Vegetation and Its Driving Force in the Pearl River Delta Region of China," IJERPH, MDPI, vol. 19(16), pages 1-15, August.
    4. Yuhao Jin & Han Zhang & Yuchao Yan & Peitong Cong, 2020. "A Semi-Parametric Geographically Weighted Regression Approach to Exploring Driving Factors of Fractional Vegetation Cover: A Case Study of Guangdong," Sustainability, MDPI, vol. 12(18), pages 1-19, September.
    5. Cecilia Parracciani & Robert Buitenwerf & Jens-Christian Svenning, 2023. "Impacts of Climate Change on Vegetation in Kenya: Future Projections and Implications for Protected Areas," Land, MDPI, vol. 12(11), pages 1-20, November.
    6. Hasibuan, Abdul Muis & Gregg, Daniel & Stringer, Randy, 2020. "Accounting for diverse risk attitudes in measures of risk perceptions: A case study of climate change risk for small-scale citrus farmers in Indonesia," Land Use Policy, Elsevier, vol. 95(C).
    7. Meng Wang & Zhengfeng An, 2022. "Regional and Phased Vegetation Responses to Climate Change Are Different in Southwest China," Land, MDPI, vol. 11(8), pages 1-21, July.
    8. Kexin Zhang & Jiajia Luo & Jiaoting Peng & Hongchang Zhang & Yan Ji & Hong Wang, 2022. "Analysis of Extreme Temperature Variations on the Yunnan-Guizhou Plateau in Southwestern China over the Past 60 Years," Sustainability, MDPI, vol. 14(14), pages 1-17, July.
    9. Tengfei Yuan & Shaojian Huang & Peng Zhang & Zhengcheng Song & Jun Ge & Xin Miao & Yujuan Wang & Qiaotong Pang & Dong Peng & Peipei Wu & Junjiong Shao & Peipei Zhang & Yabo Wang & Hongyan Guo & Weidon, 2024. "Potential decoupling of CO2 and Hg uptake process by global vegetation in the 21st century," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    10. Yue Pan & Jian Gong & Jingye Li, 2022. "Assessment of Remote Sensing Ecological Quality by Introducing Water and Air Quality Indicators: A Case Study of Wuhan, China," Land, MDPI, vol. 11(12), pages 1-22, December.
    11. Lin Jin & Zhijie Zhang, 2024. "Assessing Environmental Sustainability in the Transnational Basin of the Tumen River Based on Remote Sensing Data and a Geographical Detector," Sustainability, MDPI, vol. 16(18), pages 1-17, September.
    12. Xi Liu & Guoming Du & Xiaodie Zhang & Xing Li & Shining Lv & Yinghao He, 2024. "Vegetation Dynamics and Driving Mechanisms Considering Time-Lag and Accumulation Effects: A Case Study of Hubao–Egyu Urban Agglomeration," Land, MDPI, vol. 13(9), pages 1-17, August.
    13. Yue, Ping & Zhang, Qiang & Ren, Xueyuan & Yang, Zesu & Li, Hongyu & Yang, Yang, 2022. "Environmental and biophysical effects of evapotranspiration in semiarid grassland and maize cropland ecosystems over the summer monsoon transition zone of China," Agricultural Water Management, Elsevier, vol. 264(C).
    14. Haochen Yu & Zhengfu Bian & Shouguo Mu & Junfang Yuan & Fu Chen, 2020. "Effects of Climate Change on Land Cover Change and Vegetation Dynamics in Xinjiang, China," IJERPH, MDPI, vol. 17(13), pages 1-25, July.
    15. Yixian Xiao & Li He & Xin Chen & Zhengwei He & Yangqi Lai & Fang Luo & Yuxin Cen & Dan Li & Run Jin, 2024. "Impacts of Large Hydropower Projects on the Ecological Environment of Watersheds: A Case Study of Ertan Reservoir Area," Sustainability, MDPI, vol. 16(20), pages 1-23, October.
    16. Yao, Yuxia & Liao, Xingliang & Xiao, Junlan & He, Qiulan & Shi, Weiyu, 2023. "The sensitivity of maize evapotranspiration to vapor pressure deficit and soil moisture with lagged effects under extreme drought in Southwest China," Agricultural Water Management, Elsevier, vol. 277(C).
    17. Wanlu Liu & Lulu Liu & Jiangbo Gao, 2020. "Adapting to climate change: gaps and strategies for Central Asia," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(8), pages 1439-1459, December.
    18. Weiliang Wang & Xinran Li & Haijing Lv & Yu Tian, 2023. "What Are the Correlations between Human Disturbance, the Spatial Pattern of the Urban Landscape, and Eco-Environmental Quality?," Sustainability, MDPI, vol. 15(2), pages 1-24, January.
    19. Bimal Kumar Dora & Sunil Bhat & Arghya Mitra & Damien Ernst & Adrian Halinka & Daria Zychma & Pawel Sowa, 2025. "The Global Electricity Grid: A Comprehensive Review," Energies, MDPI, vol. 18(5), pages 1-39, February.
    20. Huizhao Yang & Sailesh Ranjitkar & Wenxuan Xu & Lei Han & Jianbo Yang & Liqing Wu & Jianchu Xu, 2021. "Crop-climate model in support of adjusting local ecological calendar in the Taxkorgan, eastern Pamir Plateau," Climatic Change, Springer, vol. 167(3), pages 1-19, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:296:y:2024:i:c:s037837742400146x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.