IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v293y2024ics0378377424000398.html
   My bibliography  Save this article

Retrieving the irrigation actually applied at district scale: Assimilating high-resolution Sentinel-1-derived soil moisture data into a FAO-56-based model

Author

Listed:
  • Laluet, Pierre
  • Olivera-Guerra, Luis Enrique
  • Altés, Víctor
  • Paolini, Giovanni
  • Ouaadi, Nadia
  • Rivalland, Vincent
  • Jarlan, Lionel
  • Villar, Josep Maria
  • Merlin, Olivier

Abstract

Irrigation is the most water consuming activity in the world. Knowing the timing and amount of irrigation that is actually applied is therefore fundamental for water managers. However, this information is rarely available at all scales and is subject to large uncertainties due to the wide variety of existing agricultural practices and associated irrigation regimes (full irrigation, deficit irrigation, or over-irrigation). To fill this gap, we propose a two-step approach based on 15 m resolution Sentinel-1 (S1) surface soil moisture (SSM) data to retrieve the actual irrigation at the weekly scale over an entire irrigation district. In a first step, the S1-derived SSM is assimilated into a FAO-56-based crop water balance model (SAMIR) to retrieve for each crop type both the irrigation amount (Idose) and the soil moisture threshold (SMthreshold) at which irrigation is triggered. To do this, a particle filter method is implemented, with particles reset each month to provide time-varying SMthreshold and Idose. In a second step, the retrieved SMthreshold and Idose values are used as input to SAMIR to estimate the weekly irrigation and its uncertainty. The assimilation approach (SSM-ASSIM) is tested over the 8000 hectare Algerri-Balaguer irrigation district located in northeastern Spain, where in situ irrigation data integrating the whole district are available at the weekly scale during 2019. For evaluation, the performance of SSM-ASSIM is compared with that of the default FAO-56 irrigation module (called FAO56-DEF), which sets the SMthreshold to the critical soil moisture value and systematically fills the soil reservoir for each irrigation event. In 2019, with an observed annual irrigation of 687 mm, SSM-ASSIM (FAO56-DEF) shows a root mean square deviation between retrieved and in situ irrigation of 6.7 (8.8) mm week-1, a bias of +0.3 (−1.4) mm week-1, and a Pearson correlation coefficient of 0.88 (0.78). The SSM-ASSIM approach shows great potential for retrieving the weekly water use over extended areas for any irrigation regime, including over-irrigation.

Suggested Citation

  • Laluet, Pierre & Olivera-Guerra, Luis Enrique & Altés, Víctor & Paolini, Giovanni & Ouaadi, Nadia & Rivalland, Vincent & Jarlan, Lionel & Villar, Josep Maria & Merlin, Olivier, 2024. "Retrieving the irrigation actually applied at district scale: Assimilating high-resolution Sentinel-1-derived soil moisture data into a FAO-56-based model," Agricultural Water Management, Elsevier, vol. 293(C).
  • Handle: RePEc:eee:agiwat:v:293:y:2024:i:c:s0378377424000398
    DOI: 10.1016/j.agwat.2024.108704
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377424000398
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2024.108704?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Amazirh, Abdelhakim & Merlin, Olivier & Er-Raki, Salah & Bouras, Elhoussaine & Chehbouni, Abdelghani, 2021. "Implementing a new texture-based soil evaporation reduction coefficient in the FAO dual crop coefficient method," Agricultural Water Management, Elsevier, vol. 250(C).
    2. Ali Ajaz & Sumon Datta & Scott Stoodley, 2020. "High Plains Aquifer–State of Affairs of Irrigated Agriculture and Role of Irrigation in the Sustainability Paradigm," Sustainability, MDPI, vol. 12(9), pages 1-17, May.
    3. Brombacher, Joost & Silva, Isadora Rezende de Oliveira & Degen, Jelle & Pelgrum, Henk, 2022. "A novel evapotranspiration based irrigation quantification method using the hydrological similar pixels algorithm," Agricultural Water Management, Elsevier, vol. 267(C).
    4. Yue Qin & Nathaniel D. Mueller & Stefan Siebert & Robert B. Jackson & Amir AghaKouchak & Julie B. Zimmerman & Dan Tong & Chaopeng Hong & Steven J. Davis, 2019. "Flexibility and intensity of global water use," Nature Sustainability, Nature, vol. 2(6), pages 515-523, June.
    5. Arnald Puy & Emanuele Borgonovo & Samuele Lo Piano & Simon A. Levin & Andrea Saltelli, 2021. "Irrigated areas drive irrigation water withdrawals," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    6. Dari, Jacopo & Quintana-Seguí, Pere & Morbidelli, Renato & Saltalippi, Carla & Flammini, Alessia & Giugliarelli, Elena & Escorihuela, María José & Stefan, Vivien & Brocca, Luca, 2022. "Irrigation estimates from space: Implementation of different approaches to model the evapotranspiration contribution within a soil-moisture-based inversion algorithm," Agricultural Water Management, Elsevier, vol. 265(C).
    7. Yue Qin & Nathaniel D. Mueller & Stefan Siebert & Robert B. Jackson & Amir AghaKouchak & Julie B. Zimmerman & Dan Tong & Chaopeng Hong & Steven J. Davis, 2019. "Author Correction: Flexibility and intensity of global water use," Nature Sustainability, Nature, vol. 2(7), pages 643-643, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Altés, Víctor & Pascual, Miquel & Escorihuela, Maria José & Villar, Josep Maria, 2024. "Assessing irrigation impact on water quality conditions: A case study in the River Noguera Ribagorçana (NE Spain)," Agricultural Water Management, Elsevier, vol. 296(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Olivera-Guerra, Luis-Enrique & Laluet, Pierre & Altés, Víctor & Ollivier, Chloé & Pageot, Yann & Paolini, Giovanni & Chavanon, Eric & Rivalland, Vincent & Boulet, Gilles & Villar, Josep-Maria & Merlin, 2023. "Modeling actual water use under different irrigation regimes at district scale: Application to the FAO-56 dual crop coefficient method," Agricultural Water Management, Elsevier, vol. 278(C).
    2. Zappa, Luca & Dari, Jacopo & Modanesi, Sara & Quast, Raphael & Brocca, Luca & De Lannoy, Gabrielle & Massari, Christian & Quintana-Seguí, Pere & Barella-Ortiz, Anais & Dorigo, Wouter, 2024. "Benefits and pitfalls of irrigation timing and water amounts derived from satellite soil moisture," Agricultural Water Management, Elsevier, vol. 295(C).
    3. Shen, Yan & Puig-Bargués, Jaume & Li, Mengyao & Xiao, Yang & Li, Qiang & Li, Yunkai, 2022. "Physical, chemical and biological emitter clogging behaviors in drip irrigation systems using high-sediment loaded water," Agricultural Water Management, Elsevier, vol. 270(C).
    4. Paolini, Giovanni & Escorihuela, Maria Jose & Merlin, Olivier & Laluet, Pierre & Bellvert, Joaquim & Pellarin, Thierry, 2023. "Estimating multi-scale irrigation amounts using multi-resolution soil moisture data: A data-driven approach using PrISM," Agricultural Water Management, Elsevier, vol. 290(C).
    5. Mae A. Davenport & Amelia Kreiter & Kate A. Brauman & Bonnie Keeler & J. Arbuckle & Vasudha Sharma & Amit Pradhananga & Ryan Noe, 2022. "An experiential model of drought risk and future irrigation behaviors among central Minnesota farmers," Climatic Change, Springer, vol. 171(1), pages 1-16, March.
    6. Kelley, Jason & Olson, Bailey, 2022. "Interannual variability of water productivity on the Eastern Snake Plain in Idaho, United States," Agricultural Water Management, Elsevier, vol. 265(C).
    7. Eekhout, J.P.C. & Delsman, I. & Baartman, J.E.M. & van Eupen, M. & van Haren, C. & Contreras, S. & Martínez-López, J. & de Vente, J., 2024. "How future changes in irrigation water supply and demand affect water security in a Mediterranean catchment," Agricultural Water Management, Elsevier, vol. 297(C).
    8. Hou, Peng & Liu, Lu & Tahir, Muhammad & Li, Yan & Wang, Xuejun & Shi, Ning & Xiao, Yang & Ma, Changjian & Li, Yunkai, 2024. "Effect of fertilization on emitter clogging in drip irrigation using high sediment water: Perspective of sediment discharge capacity," Agricultural Water Management, Elsevier, vol. 294(C).
    9. Hou, Peng & Ma, Changjian & Wang, Jia & Li, Yan & Zhang, Kai & Hou, Shance & Li, Jingzhi & Sun, Zeqiang & Xiao, Yang & Li, Yunkai, 2024. "Failure behavior of pressure compensating emitter under different operation pressures in drip irrigation systems," Agricultural Water Management, Elsevier, vol. 297(C).
    10. Koen De Vos & Charlotte Janssens & Liesbet Jacobs & Benjamin Campforts & Esther Boere & Marta Kozicka & David Leclère & Petr Havlík & Lisa-Marie Hemerijckx & Anton Van Rompaey & Miet Maertens & Gerard, 2024. "African food system and biodiversity mainly affected by urbanization via dietary shifts," Nature Sustainability, Nature, vol. 7(7), pages 869-878, July.
    11. Hang Xu & Rui Yang & Jianfeng Song, 2021. "Agricultural Water Use Efficiency and Rebound Effect: A Study for China," IJERPH, MDPI, vol. 18(13), pages 1-16, July.
    12. Sangha, Laljeet & Shortridge, Julie, 2023. "Quantification of unreported water use for supplemental crop irrigation in humid climates using publicly available agricultural data," Agricultural Water Management, Elsevier, vol. 287(C).
    13. Rosa, Lorenzo & Sanchez, Daniel L. & Realmonte, Giulia & Baldocchi, Dennis & D'Odorico, Paolo, 2021. "The water footprint of carbon capture and storage technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    14. Sara, Ourrai & Bouchra, Aithssaine & Abdelhakim, Amazirh & Salah, Er-RAKI & Lhoussaine, Bouchaou & Frederic, Jacob & Abdelghani, Chehbouni, 2024. "Assessment of the modified two-source energy balance (TSEB) model for estimating evapotranspiration and its components over an irrigated olive orchard in Morocco," Agricultural Water Management, Elsevier, vol. 298(C).
    15. Manuel Soler-Méndez & Dolores Parras-Burgos & Estefanía Mas-Espinosa & Antonio Ruíz-Canales & Diego S. Intrigliolo & José Miguel Molina-Martínez, 2021. "Standardization of the Dimensions of a Portable Weighing Lysimeter Designed to Be Applied to Vegetable Crops in Mediterranean Climates," Sustainability, MDPI, vol. 13(4), pages 1-17, February.
    16. Julia Terrapon-Pfaff & Sibel Raquel Ersoy & Thomas Fink & Sarra Amroune & El Mostafa Jamea & Hsaine Zgou & Peter Viebahn, 2020. "Localizing the Water-Energy Nexus: The Relationship between Solar Thermal Power Plants and Future Developments in Local Water Demand," Sustainability, MDPI, vol. 13(1), pages 1-23, December.
    17. Kelechi Igwe & Vaishali Sharda & Trevor Hefley, 2023. "Evaluating the Impact of Future Seasonal Climate Extremes on Crop Evapotranspiration of Maize in Western Kansas Using a Machine Learning Approach," Land, MDPI, vol. 12(8), pages 1-26, July.
    18. Lankford, Bruce A., 2023. "Resolving the paradoxes of irrigation efficiency: Irrigated systems accounting analyses depletion-based water conservation for reallocation," Agricultural Water Management, Elsevier, vol. 287(C).
    19. Zhu, Wenbin & Yu, Xiaoyu & Wei, Jiaxing & Lv, Aifeng, 2024. "Surface flux equilibrium estimates of evaporative fraction and evapotranspiration at global scale: Accuracy evaluation and performance comparison," Agricultural Water Management, Elsevier, vol. 291(C).
    20. Arnald Puy & Razi Sheikholeslami & Hoshin V. Gupta & Jim W. Hall & Bruce Lankford & Samuele Lo Piano & Jonas Meier & Florian Pappenberger & Amilcare Porporato & Giulia Vico & Andrea Saltelli, 2022. "The delusive accuracy of global irrigation water withdrawal estimates," Nature Communications, Nature, vol. 13(1), pages 1-4, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:293:y:2024:i:c:s0378377424000398. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.