IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v282y2023ics0378377423001373.html
   My bibliography  Save this article

Evaluating the effectiveness of macro-level water-saving policies based on water footprint sustainability indicators

Author

Listed:
  • Zarezadeh, Mahboubeh
  • Delavar, Majid
  • Morid, Saeed
  • Abbasi, Hamid

Abstract

Sustainable water resources management is a main objective of government macro-level documents. Assessments of such documents should be performed before their implementation because they may be ineffective or even result in negative consequences. The current study quantitatively determined the capacity of four important Iranian macro-level documents and their policies to achieve sustainability for water resources. Commonly considered measures include: a) expansion of modern irrigation systems, b) change in the cropping pattern, c) change in the cropping date and d) deficit irrigation. A comprehensive approach was developed by linking the SWAT optimization model and water footprint sustainability indices for the assessments. The two management scenarios examined were: (1) improving the status of water resources and; (2) improving the economic situation or minimizing income loss. The Tashk-Bakhtegan (TB) Basin was selected as a pilot study to explore the effectiveness of the methodology and assessment of the documents. The results showed that, under scenario 1, the policies from the documents had the capacity to improve the blue sustainability indices of the basin, but they were unable to meet the environmental water demand. The policy for scenario 2 was associated with a decrease in the level of income in the agricultural sector and a decrease in the area cultivated. It was found that a 20–28% reduction in the cultivated area was required for the sustainability of the TB Basin environment. It was shown that the approaches in the documents had the potential for improving the sustainability of water resources. However, their capacity was insufficient and their success depended on issues such as the ability for effective water allocation and control of rebound effects as well as compensation for economic loss. This was crucial for consideration of future macro-level documents. The proposed modeling framework can be strongly recommended for wider applications.

Suggested Citation

  • Zarezadeh, Mahboubeh & Delavar, Majid & Morid, Saeed & Abbasi, Hamid, 2023. "Evaluating the effectiveness of macro-level water-saving policies based on water footprint sustainability indicators," Agricultural Water Management, Elsevier, vol. 282(C).
  • Handle: RePEc:eee:agiwat:v:282:y:2023:i:c:s0378377423001373
    DOI: 10.1016/j.agwat.2023.108272
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377423001373
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2023.108272?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Julio Berbel & Carlos Gutiérrez-Martín & Juan Rodríguez-Díaz & Emilio Camacho & Pilar Montesinos, 2015. "Literature Review on Rebound Effect of Water Saving Measures and Analysis of a Spanish Case Study," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(3), pages 663-678, February.
    2. Jeyrani, F. & Morid, S. & Srinivasan, R., 2021. "Assessing basin blue–green available water components under different management and climate scenarios using SWAT," Agricultural Water Management, Elsevier, vol. 256(C).
    3. Raeisi, Leila Goli & Morid, Saeed & Delavar, Majid & Srinivasan, Raghavan, 2019. "Effect and side-effect assessment of different agricultural water saving measures in an integrated framework," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    4. Zhou, Xinyao & Zhang, Yongqiang & Sheng, Zhuping & Manevski, Kiril & Andersen, Mathias N. & Han, Shumin & Li, Huilong & Yang, Yonghui, 2021. "Did water-saving irrigation protect water resources over the past 40 years? A global analysis based on water accounting framework," Agricultural Water Management, Elsevier, vol. 249(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nouri, Milad & Homaee, Mehdi & Pereira, Luis S. & Bybordi, Mohammad, 2023. "Water management dilemma in the agricultural sector of Iran: A review focusing on water governance," Agricultural Water Management, Elsevier, vol. 288(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Forough Jafary & Chris Bradley, 2018. "Groundwater Irrigation Management and the Existing Challenges from the Farmers’ Perspective in Central Iran," Land, MDPI, vol. 7(1), pages 1-21, January.
    2. Qian Chen & Jaume Freire González & Donglan Zha, 2023. "The Gap between Expectations and Reality: Assessing the Water Rebound Effect in Chinese Agriculture," Working Papers 1415, Barcelona School of Economics.
    3. Eini, Mohammad Reza & Salmani, Haniyeh & Piniewski, Mikołaj, 2023. "Comparison of process-based and statistical approaches for simulation and projections of rainfed crop yields," Agricultural Water Management, Elsevier, vol. 277(C).
    4. Wang, Rong & Huang, Guanhua & Xu, Xu & Ren, Dongyang & Gou, Jiachao & Wu, Zhangsheng, 2022. "Significant differences in agro-hydrological processes and water productivity between canal- and well-irrigated areas in an arid region," Agricultural Water Management, Elsevier, vol. 267(C).
    5. Guerrero-Baena, M. Dolores & Villanueva, Anastasio J. & Gómez-Limón, José A. & Glenk, Klaus, 2019. "Willingness to pay for improved irrigation water supply reliability: An approach based on probability density functions," Agricultural Water Management, Elsevier, vol. 217(C), pages 11-22.
    6. Saeed Nosratabadi & Sina Ardabili & Zoltan Lakner & Csaba Mako & Amir Mosavi, 2021. "Prediction of Food Production Using Machine Learning Algorithms of Multilayer Perceptron and ANFIS," Papers 2104.14286, arXiv.org.
    7. Jiménez-Aguirre, M.T. & Isidoro, D., 2018. "Hydrosaline Balance in and Nitrogen Loads from an irrigation district before and after modernization," Agricultural Water Management, Elsevier, vol. 208(C), pages 163-175.
    8. Nouri, Milad & Homaee, Mehdi & Pereira, Luis S. & Bybordi, Mohammad, 2023. "Water management dilemma in the agricultural sector of Iran: A review focusing on water governance," Agricultural Water Management, Elsevier, vol. 288(C).
    9. Xie, Yang & Zilberman, David, 2015. "Water Storage Capacities versus Water Use Efficiency: Substitutes or Complements?," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205439, Agricultural and Applied Economics Association.
    10. Yiyu Feng & Ming Chang & Erga Luo & Jing Liu, 2023. "Has Property Rights Reform of China’s Farmland Water Facilities Improved Farmers’ Irrigation Efficiency?—Evidence from a Typical Reform Pilot in China’s Yunnan Province," Agriculture, MDPI, vol. 13(2), pages 1-27, January.
    11. Aijun Guo & Rong Zhang & Xiaoyu Song & Fanglei Zhong & Daiwei Jiang & Yuan Song, 2021. "Predicting the Water Rebound Effect in China under the Shared Socioeconomic Pathways," IJERPH, MDPI, vol. 18(3), pages 1-24, February.
    12. Sheng, Jichuan & Qiu, Wenge, 2022. "Water-use technical efficiency and income: Evidence from China's South-North Water Transfer Project," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    13. Babaeian, Fariba & Delavar, Majid & Morid, Saeed & Srinivasan, Raghavan, 2021. "Robust climate change adaptation pathways in agricultural water management," Agricultural Water Management, Elsevier, vol. 252(C).
    14. Simons, G.W.H. & Bastiaanssen, W.G.M. & Cheema, M.J.M. & Ahmad, B. & Immerzeel, W.W., 2020. "A novel method to quantify consumed fractions and non-consumptive use of irrigation water: Application to the Indus Basin Irrigation System of Pakistan," Agricultural Water Management, Elsevier, vol. 236(C).
    15. Berbel, J., 2015. "Nota sobre valor, coste y renta del agua de riego," Economia Agraria y Recursos Naturales, Spanish Association of Agricultural Economists, vol. 15(01).
    16. Xu, Hang & Song, Jianfeng, 2022. "Drivers of the irrigation water rebound effect: A case study of Hetao irrigation district in Yellow River basin, China," Agricultural Water Management, Elsevier, vol. 266(C).
    17. Cai, Wenjuan & Jiang, Xiaohui & Sun, Haotian & He, Jiaying & Deng, Chun & Lei, Yuxin, 2022. "Temporal and spatial variation and driving factors of water consumption in the middle Heihe river basin before and after the implementation of the"97 water diversion scheme"," Agricultural Water Management, Elsevier, vol. 269(C).
    18. Han, Feng & Zheng, Yi & Zhang, Ling & Xiong, Rui & Hu, Zhaoping & Tian, Yong & Li, Xin, 2023. "Simulating drip irrigation in large-scale and high-resolution ecohydrological models: From emitters to the basin," Agricultural Water Management, Elsevier, vol. 289(C).
    19. Gao, Jie & Zhuo, La & Duan, Ximing & Wu, Pute, 2023. "Agricultural water-saving potentials with water footprint benchmarking under different tillage practices for crop production in an irrigation district," Agricultural Water Management, Elsevier, vol. 282(C).
    20. María M. Borrego-Marín & Carlos Gutiérrez-Martín & Julio Berbel, 2016. "Estimation of Cost Recovery Ratio for Water Services Based on the System of Environmental-Economic Accounting for Water," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 767-783, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:282:y:2023:i:c:s0378377423001373. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.