IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v27y1995i3-4p243-257.html
   My bibliography  Save this article

Modelling the effects of sprinkler irrigation uniformity on crop yield

Author

Listed:
  • Mantovani, E. C.
  • Villalobos, F. J.
  • Organ, F.
  • Fereres, E.

Abstract

No abstract is available for this item.

Suggested Citation

  • Mantovani, E. C. & Villalobos, F. J. & Organ, F. & Fereres, E., 1995. "Modelling the effects of sprinkler irrigation uniformity on crop yield," Agricultural Water Management, Elsevier, vol. 27(3-4), pages 243-257, July.
  • Handle: RePEc:eee:agiwat:v:27:y:1995:i:3-4:p:243-257
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0378-3774(95)01159-G
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Losada, A. & Juana, L. & Roldan, J., 1990. "Operation diagrams for irrigation management," Agricultural Water Management, Elsevier, vol. 18(4), pages 289-300, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maroufpoor, Saman & Shiri, Jalal & Maroufpoor, Eisa, 2019. "Modeling the sprinkler water distribution uniformity by data-driven methods based on effective variables," Agricultural Water Management, Elsevier, vol. 215(C), pages 63-73.
    2. Monjardino, Marta & Harrison, Matthew T. & DeVoil, Peter & Rodriguez, Daniel & Sadras, Victor O., 2022. "Agronomic and on-farm infrastructure adaptations to manage economic risk in Australian irrigated broadacre systems: A case study," Agricultural Water Management, Elsevier, vol. 269(C).
    3. Farré, I. & Faci, J.-M., 2009. "Deficit irrigation in maize for reducing agricultural water use in a Mediterranean environment," Agricultural Water Management, Elsevier, vol. 96(3), pages 383-394, March.
    4. Zhao, Weixia & Li, Jiusheng & Li, Yanfeng & Yin, Jianfeng, 2012. "Effects of drip system uniformity on yield and quality of Chinese cabbage heads," Agricultural Water Management, Elsevier, vol. 110(C), pages 118-128.
    5. Robles, O. & Playán, E. & Cavero, J. & Zapata, N., 2017. "Assessing low-pressure solid-set sprinkler irrigation in maize," Agricultural Water Management, Elsevier, vol. 191(C), pages 37-49.
    6. Ge, Maosheng & Wu, Pute & Zhu, Delan & Zhang, Lin, 2020. "Comparisons of spray characteristics between vertical impact and turbine drive sprinklers—A case study of the 50PYC and HY50 big gun-type sprinklers," Agricultural Water Management, Elsevier, vol. 228(C).
    7. Cavero, Jose & Faci, Jose M. & Martínez-Cob, Antonio, 2016. "Relevance of sprinkler irrigation time of the day on alfalfa forage production," Agricultural Water Management, Elsevier, vol. 178(C), pages 304-313.
    8. Jovanovic, N. & Pereira, L.S. & Paredes, P. & Pôças, I. & Cantore, V. & Todorovic, M., 2020. "A review of strategies, methods and technologies to reduce non-beneficial consumptive water use on farms considering the FAO56 methods," Agricultural Water Management, Elsevier, vol. 239(C).
    9. Maroufpoor, Saman & Maroufpoor, Eisa & Khaledi, Mohammad, 2019. "Effect of farmers’ management on movable sprinkler solid-set systems," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    10. Li, Jiusheng & Li, Bei & Rao, Minjie, 2005. "Spatial and temporal distributions of nitrogen and crop yield as affected by nonuniformity of sprinkler fertigation," Agricultural Water Management, Elsevier, vol. 76(3), pages 160-180, August.
    11. López-Mata, E. & Tarjuelo, J.M. & de Juan, J.A. & Ballesteros, R. & Domínguez, A., 2010. "Effect of irrigation uniformity on the profitability of crops," Agricultural Water Management, Elsevier, vol. 98(1), pages 190-198, December.
    12. Farre, Imma & Faci, Jose Maria, 2006. "Comparative response of maize (Zea mays L.) and sorghum (Sorghum bicolor L. Moench) to deficit irrigation in a Mediterranean environment," Agricultural Water Management, Elsevier, vol. 83(1-2), pages 135-143, May.
    13. Berbel, J. & Mateos, L., 2014. "Does investment in irrigation technology necessarily generate rebound effects? A simulation analysis based on an agro-economic model," Agricultural Systems, Elsevier, vol. 128(C), pages 25-34.
    14. Li, Jiusheng, 1998. "Modeling crop yield as affected by uniformity of sprinkler irrigation system," Agricultural Water Management, Elsevier, vol. 38(2), pages 135-146, December.
    15. Pereira, Luis Santos & Oweis, Theib & Zairi, Abdelaziz, 2002. "Irrigation management under water scarcity," Agricultural Water Management, Elsevier, vol. 57(3), pages 175-206, December.
    16. Reca, J. & Trillo, C. & Sánchez, J.A. & Martínez, J. & Valera, D., 2018. "Optimization model for on-farm irrigation management of Mediterranean greenhouse crops using desalinated and saline water from different sources," Agricultural Systems, Elsevier, vol. 166(C), pages 173-183.
    17. Zhou, Lifeng & He, Jianqiang & Qi, Zhijuan & Dyck, Miles & Zou, Yufeng & Zhang, Tibin & Feng, Hao, 2018. "Effects of lateral spacing for drip irrigation and mulching on the distributions of soil water and nitrate, maize yield, and water use efficiency," Agricultural Water Management, Elsevier, vol. 199(C), pages 190-200.
    18. Bergez, J. -E. & Nolleau, S., 2003. "Maize grain yield variability between irrigation stands: a theoretical study," Agricultural Water Management, Elsevier, vol. 60(1), pages 43-57, April.
    19. Pereira, Luis S., 1999. "Higher performance through combined improvements in irrigation methods and scheduling: a discussion," Agricultural Water Management, Elsevier, vol. 40(2-3), pages 153-169, May.
    20. Li, Jiusheng & Rao, Minjie, 2003. "Field evaluation of crop yield as affected by nonuniformity of sprinkler-applied water and fertilizers," Agricultural Water Management, Elsevier, vol. 59(1), pages 1-13, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Juan, J. A. de & Tarjuelo, J. M. & Valiente, M. & Garcia, P., 1996. "Model for optimal cropping patterns within the farm based on crop water production functions and irrigation uniformity I: Development of a decision model," Agricultural Water Management, Elsevier, vol. 31(1-2), pages 115-143, June.
    2. Duarte, A.C. & Mateos, L., 2022. "How changes in cropping intensity affect water usage in an irrigated Mediterranean catchment," Agricultural Water Management, Elsevier, vol. 260(C).
    3. Li, Jiusheng, 1998. "Modeling crop yield as affected by uniformity of sprinkler irrigation system," Agricultural Water Management, Elsevier, vol. 38(2), pages 135-146, December.
    4. Pereira, Luis S., 1999. "Higher performance through combined improvements in irrigation methods and scheduling: a discussion," Agricultural Water Management, Elsevier, vol. 40(2-3), pages 153-169, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:27:y:1995:i:3-4:p:243-257. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.