IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v279y2023ics0378377423000604.html
   My bibliography  Save this article

Quantifying the contribution of meteorological factors and plant traits to canopy interception under maize cropland

Author

Listed:
  • Zhang, Rui
  • Seki, Katsutoshi
  • Wang, Li

Abstract

A thorough understanding of crop canopy interception is crucial for understanding the relationship between water management and agriculture in water-limited regions. The factors that influence the interception process, such as meteorological conditions and plant traits, are diverse and uncertain. We divided meteorological factors and plant traits into three groups: precipitation-related meteorological factors (including precipitation event factors and raindrop factors), non-precipitation-related meteorological factors (air temperature, relative humidity, wind speed, etc.) and plant traits (leaf area index (LAI) and mean leaf inclination angle). The contributions of groups and each variable were then quantified with respect to canopy interception. This study was based on data from 80 events over four years (2017–2020). Measurements were taken under maize (Zea mays L.) cropland located on the southern Loess Plateau. The canopy interception (Ic) was calculated as the difference between precipitation and the sum of throughfall and stemflow and all of Ic was assumed to be lost to evaporation in the study. Results showed that the cumulative Ic of the 80 events was 395.9 mm, accounting for 39.7% of the contemporaneous total precipitation, but the mean proportion of canopy interception during each precipitation event (Ic percentage) was greater at 57.6% because of the high interception percentage during light precipitation events (0–5 mm, totaling 37 events). Pearson correlations analysis revealed a significant positive correlation between Ic and precipitation-related meteorological factors (including precipitation amount, duration, raindrop diameter (D50), terminal raindrop velocity (UV) (p < 0.01) and intensity, average downward force (F0) (p < 0.05)), whereas there was a significant negative correlation between Ic percentage and precipitation-related meteorological factors (p < 0.01) because precipitation amount was more affected by precipitation-related meteorological factors. When the results of different groups were compared, precipitation event factors (amount, duration and intensity) and raindrop factors (D50, UV, F0,) made the highest contribution to explaining Ic (56.4%) and Ic percentage (28.3%), respectively. Both the unique effect and individual importance of plant traits to Ic and Ic percentage increased when considering the precipitation events which occurred close to the LAI measurement date. It is essential that short-term assessments are used if considering LAI in relation to Ic. Precipitation amount had the largest individual importance on Ic (30.2%, p < 0.01), whereas D50 was the analogous variable for Ic percentage (9.5%, p < 0.05). Our results confirmed that interception by the maize canopy accounts for an important portion of the total field water input. The data and information on the interception process presented in this study, should contribute to the understanding of the overall water balance in agroecosystem environments and improve knowledge of the interplay between agroecosystems and the environment.

Suggested Citation

  • Zhang, Rui & Seki, Katsutoshi & Wang, Li, 2023. "Quantifying the contribution of meteorological factors and plant traits to canopy interception under maize cropland," Agricultural Water Management, Elsevier, vol. 279(C).
  • Handle: RePEc:eee:agiwat:v:279:y:2023:i:c:s0378377423000604
    DOI: 10.1016/j.agwat.2023.108195
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377423000604
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2023.108195?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Haijun & Zhang, Ruihao & Zhang, Liwei & Wang, Xuming & Li, Yan & Huang, Guanhua, 2015. "Stemflow of water on maize and its influencing factors," Agricultural Water Management, Elsevier, vol. 158(C), pages 35-41.
    2. Zheng, Jing & Fan, Junliang & Zhang, Fucang & Yan, Shicheng & Xiang, Youzhen, 2018. "Rainfall partitioning into throughfall, stemflow and interception loss by maize canopy on the semi-arid Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 195(C), pages 25-36.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hui, Xin & Zheng, Yudong & Yan, Haijun, 2021. "Water distributions of low-pressure sprinklers as affected by the maize canopy under a centre pivot irrigation system," Agricultural Water Management, Elsevier, vol. 245(C).
    2. Zheng, Jing & Fan, Junliang & Zhang, Fucang & Zhuang, Qianlai, 2021. "Evapotranspiration partitioning and water productivity of rainfed maize under contrasting mulching conditions in Northwest China," Agricultural Water Management, Elsevier, vol. 243(C).
    3. Zou, Haiyang & Fan, Junliang & Zhang, Fucang & Xiang, Youzhen & Wu, Lifeng & Yan, Shicheng, 2020. "Optimization of drip irrigation and fertilization regimes for high grain yield, crop water productivity and economic benefits of spring maize in Northwest China," Agricultural Water Management, Elsevier, vol. 230(C).
    4. Václav BRANT & Petr ZÁBRANSKÝ & Michaela ŠKEŘÍKOVÁ & Jan PIVEC & Milan KROULÍK & Luděk PROCHÁZKA, 2017. "Effect of row width on splash erosion and throughfall in silage maize crops," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 12(1), pages 39-50.
    5. Wang, Di & Wang, Li & Zhang, Rui, 2022. "Measurement and modeling of canopy interception losses by two differently aged apple orchards in a subhumid region of the Yellow River Basin," Agricultural Water Management, Elsevier, vol. 269(C).
    6. Qiang, Shengcai & Zhang, Yan & Fan, Junliang & Zhang, Fucang & Sun, Min & Gao, Zhiqiang, 2022. "Combined effects of ridge–furrow ratio and urea type on grain yield and water productivity of rainfed winter wheat on the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 261(C).
    7. Liu, Haijun & Wang, Xuming & Zhang, Xian & Zhang, Liwei & Li, Yan & Huang, Guanhua, 2017. "Evaluation on the responses of maize (Zea mays L.) growth, yield and water use efficiency to drip irrigation water under mulch condition in the Hetao irrigation District of China," Agricultural Water Management, Elsevier, vol. 179(C), pages 144-157.
    8. David Kincl & Pavel Formánek & Jan Vopravil & Pavel Nerušil & Ladislav Menšík & Jaroslava Janků, 2022. "Soil-conservation effect of intercrops in silage maize," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 17(3), pages 180-190.
    9. Cheng, Minghui & Wang, Haidong & Fan, Junliang & Zhang, Shaohui & Liao, Zhenqi & Zhang, Fucang & Wang, Yanli, 2021. "A global meta-analysis of yield and water use efficiency of crops, vegetables and fruits under full, deficit and alternate partial root-zone irrigation," Agricultural Water Management, Elsevier, vol. 248(C).
    10. Guo, Jinjin & Fan, Junliang & Xiang, Youzhen & Zhang, Fucang & Yan, Shicheng & Zhang, Xueyan & Zheng, Jing & Hou, Xianghao & Tang, Zijun & Li, Zhijun, 2022. "Maize leaf functional responses to blending urea and slow-release nitrogen fertilizer under various drip irrigation regimes," Agricultural Water Management, Elsevier, vol. 262(C).
    11. Zhang, Shaohui & Wang, Haidong & Sun, Xin & Fan, Junliang & Zhang, Fucang & Zheng, Jing & Li, Yuepeng, 2021. "Effects of farming practices on yield and crop water productivity of wheat, maize and potato in China: A meta-analysis," Agricultural Water Management, Elsevier, vol. 243(C).
    12. Yan, Shicheng & Wu, You & Fan, Junliang & Zhang, Fucang & Qiang, Shengcai & Zheng, Jing & Xiang, Youzhen & Guo, Jinjin & Zou, Haiyang, 2019. "Effects of water and fertilizer management on grain filling characteristics, grain weight and productivity of drip-fertigated winter wheat," Agricultural Water Management, Elsevier, vol. 213(C), pages 983-995.
    13. Zheng, Jing & Fan, Junliang & Zhang, Fucang & Guo, Jinjin & Yan, Shicheng & Zhuang, Qianlai & Cui, Ningbo & Guo, Li, 2021. "Interactive effects of mulching practice and nitrogen rate on grain yield, water productivity, fertilizer use efficiency and greenhouse gas emissions of rainfed summer maize in northwest China," Agricultural Water Management, Elsevier, vol. 248(C).
    14. Liao, Zhenqi & Zhang, Chen & Yu, Shuolei & Lai, Zhenlin & Wang, Haidong & Zhang, Fucang & Li, Zhijun & Wu, Peng & Fan, Junliang, 2023. "Ridge-furrow planting with black film mulching increases rainfed summer maize production by improving resources utilization on the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 289(C).
    15. Yan, Shicheng & Wu, You & Fan, Junliang & Zhang, Fucang & Guo, Jinjin & Zheng, Jing & Wu, Lifeng & Lu, Junsheng, 2022. "Quantifying nutrient stoichiometry and radiation use efficiency of two maize cultivars under various water and fertilizer management practices in northwest China," Agricultural Water Management, Elsevier, vol. 271(C).
    16. Qiang, Shengcai & Zhang, Yan & Fan, Junliang & Zhang, Fucang & Xiang, Youzheng & Yan, Shicheng & Wu, You, 2019. "Maize yield, rainwater and nitrogen use efficiency as affected by maize genotypes and nitrogen rates on the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 213(C), pages 996-1003.
    17. Zheng, Jing & Fan, Junliang & Zhang, Fucang & Wu, Lifeng & Zou, Yufeng & Zhuang, Qianlai, 2021. "Estimation of rainfed maize transpiration under various mulching methods using modified Jarvis-Stewart model and hybrid support vector machine model with whale optimization algorithm," Agricultural Water Management, Elsevier, vol. 249(C).
    18. Haijun Liu & Jie Chang & Xiaopei Tang & Jinping Zhang, 2022. "In Situ Measurement of Stemflow, Throughfall and Canopy Interception of Sprinkler Irrigation Water in a Wheat Field," Agriculture, MDPI, vol. 12(8), pages 1-15, August.
    19. Li, Yue & Chen, Ji & Feng, Hao & Dong, Qin’ge & Siddique, Kadambot H.M., 2021. "Responses of canopy characteristics and water use efficiency to ammoniated straw incorporation for summer maize (Zea mays L.) in the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 254(C).
    20. Fang, Heng & Li, Yuannong & Gu, Xiaobo & Chen, Pengpeng & Li, Yupeng, 2022. "Root characteristics, utilization of water and nitrogen, and yield of maize under biodegradable film mulching and nitrogen application," Agricultural Water Management, Elsevier, vol. 262(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:279:y:2023:i:c:s0378377423000604. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.