IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v277y2023ics0378377422006229.html
   My bibliography  Save this article

Interactive effect of water regime, nitrogen rate and biostimulant application on physiological and biochemical traits of wild rocket

Author

Listed:
  • Candido, Vincenzo
  • Boari, Francesca
  • Cantore, Vito
  • Castronuovo, Donato
  • Denora, Michele
  • Sergio, Lucrezia
  • Todorovic, Mladen
  • Schiattone, Maria Immacolata

Abstract

A research was carried out to evaluate the biostimulating effects of Azoxystrobin (Azo+) and a brown seaweed extract (SW+) on wild rocket grown during two crop cycles in pots placed in a cold greenhouse. Two watering regimes were applied (restoring 50% and 100% of crop evapotranspiration, indicated respectively WR50 and WR100) along with three N levels (0, 75 and 150 kg ha−1 of N). The experimental layout was a split-split plot with three replications, arranging water regimes in the main plots, N levels in the plots and biostimulants in the sub-plots. The paper reports the results related to the effects on i) leaf chlorophyll content (Chl), ii) parameters related to gas exchanges including net assimilation (A), transpiration (T), stomatal conductance (gs), internal CO2 concentration (Ci) and intrinsic water use efficiency (WUEi), iii) some enzymes involved in oxidative stress including superoxide dismutase (SOD), peroxidase (POD), ascorbate peroxidase (APX), catalase (CAT). The water deficit led to a drop in A and T, an increase in WUEi and in the antioxidant enzymes content of wild rocket. Chl rised with the N availability increase. The increase in N level caused the rise of A and T in WR100 while it exacerbated the negative effect of water deficit in WR50. Azo+ caused 15.0% increase in A, 13.4% drop in gs and 33.5% rise in WUEi. Additionally, Azo+ increased by 8.7% Chl and by 489%, 112%, 193%, and 336% SOD, POD, APX and CAT, respectively. SW+ improved A (+7.9%), WUEi (+14.9%), Chl (+6.1%), SOD (+395%), POD (+160%), APX (+155%) and CAT (+334%). The increase in antioxidant enzymes after the application of Azo+ and SW+ was greater under water deficit. The wild rocket benefited of Azo+ and SW+ application, which stimulated the biosynthesis of chlorophyll and antioxidant enzymes, demonstrating the potential role in limiting water stress. Therefore, the two biostimulants can represent a useful tool to improve the production of wild rocket and increase the water use efficiency.

Suggested Citation

  • Candido, Vincenzo & Boari, Francesca & Cantore, Vito & Castronuovo, Donato & Denora, Michele & Sergio, Lucrezia & Todorovic, Mladen & Schiattone, Maria Immacolata, 2023. "Interactive effect of water regime, nitrogen rate and biostimulant application on physiological and biochemical traits of wild rocket," Agricultural Water Management, Elsevier, vol. 277(C).
  • Handle: RePEc:eee:agiwat:v:277:y:2023:i:c:s0378377422006229
    DOI: 10.1016/j.agwat.2022.108075
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377422006229
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2022.108075?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cantore, V. & Lechkar, O. & Karabulut, E. & Sellami, M.H. & Albrizio, R. & Boari, F. & Stellacci, A.M. & Todorovic, M., 2016. "Combined effect of deficit irrigation and strobilurin application on yield, fruit quality and water use efficiency of “cherry” tomato (Solanum lycopersicum L.)," Agricultural Water Management, Elsevier, vol. 167(C), pages 53-61.
    2. Schiattone, M.I. & Candido, V. & Cantore, V. & Montesano, F.F. & Boari, F., 2017. "Water use and crop performance of two wild rocket genotypes under salinity conditions," Agricultural Water Management, Elsevier, vol. 194(C), pages 214-221.
    3. Boari, Francesca & Cantore, Vito & Di Venere, Donato & Sergio, Lucrezia & Candido, Vincenzo & Schiattone, Maria Immacolata, 2019. "Pyraclostrobin can mitigate salinity stress in tomato crop," Agricultural Water Management, Elsevier, vol. 222(C), pages 254-264.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schiattone, Maria Immacolata & Boari, Francesca & Cantore, Vito & Castronuovo, Donato & Denora, Michele & Di Venere, Donato & Perniola, Michele & Sergio, Lucrezia & Todorovic, Mladen & Candido, Vincen, 2023. "Effect of water regime, nitrogen level and biostimulants application on yield and quality traits of wild rocket [Diplotaxis tenuifolia (L.) DC.]," Agricultural Water Management, Elsevier, vol. 277(C).
    2. Jovanovic, N. & Pereira, L.S. & Paredes, P. & Pôças, I. & Cantore, V. & Todorovic, M., 2020. "A review of strategies, methods and technologies to reduce non-beneficial consumptive water use on farms considering the FAO56 methods," Agricultural Water Management, Elsevier, vol. 239(C).
    3. Boari, Francesca & Cantore, Vito & Di Venere, Donato & Sergio, Lucrezia & Candido, Vincenzo & Schiattone, Maria Immacolata, 2019. "Pyraclostrobin can mitigate salinity stress in tomato crop," Agricultural Water Management, Elsevier, vol. 222(C), pages 254-264.
    4. Li, Hao & Hou, Xuemin & Bertin, Nadia & Ding, Risheng & Du, Taisheng, 2023. "Quantitative responses of tomato yield, fruit quality and water use efficiency to soil salinity under different water regimes in Northwest China," Agricultural Water Management, Elsevier, vol. 277(C).
    5. Rosa Francaviglia & Claudia Di Bene, 2019. "Deficit Drip Irrigation in Processing Tomato Production in the Mediterranean Basin. A Data Analysis for Italy," Agriculture, MDPI, vol. 9(4), pages 1-14, April.
    6. Guida, Gianpiero & Sellami, Mohamed Houssemeddine & Mistretta, Carmela & Oliva, Marco & Buonomo, Roberta & De Mascellis, Roberto & Patanè, Cristina & Rouphael, Youssef & Albrizio, Rossella & Giorio, P, 2017. "Agronomical, physiological and fruit quality responses of two Italian long-storage tomato landraces under rain-fed and full irrigation conditions," Agricultural Water Management, Elsevier, vol. 180(PA), pages 126-135.
    7. Li, Huanhuan & Liu, Hao & Gong, Xuewen & Li, Shuang & Pang, Jie & Chen, Zhifang & Sun, Jingsheng, 2021. "Optimizing irrigation and nitrogen management strategy to trade off yield, crop water productivity, nitrogen use efficiency and fruit quality of greenhouse grown tomato," Agricultural Water Management, Elsevier, vol. 245(C).
    8. Minhas, P.S. & Ramos, Tiago B. & Ben-Gal, Alon & Pereira, Luis S., 2020. "Coping with salinity in irrigated agriculture: Crop evapotranspiration and water management issues," Agricultural Water Management, Elsevier, vol. 227(C).
    9. Yang, Hui & Du, Taisheng & Mao, Xiaomin & Ding, Risheng & Shukla, Manoj K., 2019. "A comprehensive method of evaluating the impact of drought and salt stress on tomato growth and fruit quality based on EPIC growth model," Agricultural Water Management, Elsevier, vol. 213(C), pages 116-127.
    10. Liu, Hao & Li, Huanhuan & Ning, Huifeng & Zhang, Xiaoxian & Li, Shuang & Pang, Jie & Wang, Guangshuai & Sun, Jingsheng, 2019. "Optimizing irrigation frequency and amount to balance yield, fruit quality and water use efficiency of greenhouse tomato," Agricultural Water Management, Elsevier, vol. 226(C).
    11. Han, Xiaoyu & Kang, Yaohu & Wan, Shuqin & Li, Xiaobin, 2022. "Effect of salinity on oleic sunflower (Helianthus annuus Linn.) under drip irrigation in arid area of Northwest China," Agricultural Water Management, Elsevier, vol. 259(C).
    12. Uygan, Demet & Cetin, Oner & Alveroglu, Volkan & Sofuoglu, Aytug, 2021. "Improvement of water saving and economic productivity based on quotation with sugar content of sugar beet using linear move sprinkler irrigation," Agricultural Water Management, Elsevier, vol. 255(C).
    13. Lu, Jia & Shao, Guangcheng & Cui, Jintao & Wang, Xiaojun & Keabetswe, Larona, 2019. "Yield, fruit quality and water use efficiency of tomato for processing under regulated deficit irrigation: A meta-analysis," Agricultural Water Management, Elsevier, vol. 222(C), pages 301-312.
    14. Hu, Yanzhe & Kang, Shaozhong & Ding, Risheng & Zhao, Qing, 2021. "A crude protein and fiber model of alfalfa incorporating growth age under water and salt stress," Agricultural Water Management, Elsevier, vol. 255(C).
    15. Yuhong Tian & Yiqing Liu & Jianjun Jin, 2017. "Effect of Irrigation Schemes on Forage Yield, Water Use Efficiency, and Nutrients in Artificial Grassland under Arid Conditions," Sustainability, MDPI, vol. 9(11), pages 1-11, November.
    16. Campi, Pasquale & Mastrorilli, Marcello & Stellacci, Anna Maria & Modugno, Francesca & Palumbo, Angelo Domenico, 2019. "Increasing the effective use of water in green asparagus through deficit irrigation strategies," Agricultural Water Management, Elsevier, vol. 217(C), pages 119-130.
    17. Chakma, Remi & Saekong, Pantamit & Biswas, Arindam & Ullah, Hayat & Datta, Avishek, 2021. "Growth, fruit yield, quality, and water productivity of grape tomato as affected by seed priming and soil application of silicon under drought stress," Agricultural Water Management, Elsevier, vol. 256(C).
    18. Hui Chen & Zi-Hui Shang & Huan-Jie Cai & Yan Zhu, 2019. "An Optimum Irrigation Schedule with Aeration for Greenhouse Tomato Cultivations Based on Entropy Evaluation Method," Sustainability, MDPI, vol. 11(16), pages 1-16, August.
    19. Qu, Zhaoming & Chen, Qi & Feng, Haojie & Hao, Miao & Niu, Guoliang & Liu, Yanli & Li, Chengliang, 2022. "Interactive effect of irrigation and blend ratio of controlled release potassium chloride and potassium chloride on greenhouse tomato production in the Yellow River Basin of China," Agricultural Water Management, Elsevier, vol. 261(C).
    20. Fullana-Pericàs, Mateu & Conesa, Miquel À. & Douthe, Cyril & El Aou-ouad, Hanan & Ribas-Carbó, Miquel & Galmés, Jeroni, 2019. "Tomato landraces as a source to minimize yield losses and improve fruit quality under water deficit conditions," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:277:y:2023:i:c:s0378377422006229. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.