IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v221y2019icp58-65.html
   My bibliography  Save this article

Optimal discharge for closed-end border irrigation under soil infiltration variability

Author

Listed:
  • Nie, Wei-Bo
  • Li, Yi-Bo
  • Zhang, Fan
  • Ma, Xiao-Yi

Abstract

Traditional border irrigation designs have rarely considered that soil infiltration can vary. The design of border irrigation systems can be improved by the optimization of border irrigation discharge. Therefore, the objectives of this study were (1) to expand the scope of the existing model for estimating and verifying the performance indicators of closed-end border irrigation; (2) to analyze the effect of infiltration variability on infiltration depth variability of closed-end border irrigation; and (3) to propose a method for determining the optimal discharge of closed-end border irrigation for variable soil. Physical and simulated experiments were conducted. The results revealed that for both variable and uniform soil, the estimated irrigation performance indicators were in good agreement with the measured values as well as values simulated using WinSRFR 4.1; the corresponding mean relative errors were less than 10%. The variance of infiltration variability explained a high percentage of the variance in infiltrated water depth (51.71%–95.68%). The optimal discharges were consistent for both variable and uniform soils, signifying that the optimal discharge of uniform soil can be used for the discharge design of a closed-end border irrigation system in variable soil.

Suggested Citation

  • Nie, Wei-Bo & Li, Yi-Bo & Zhang, Fan & Ma, Xiao-Yi, 2019. "Optimal discharge for closed-end border irrigation under soil infiltration variability," Agricultural Water Management, Elsevier, vol. 221(C), pages 58-65.
  • Handle: RePEc:eee:agiwat:v:221:y:2019:i:c:p:58-65
    DOI: 10.1016/j.agwat.2019.04.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037837741831597X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2019.04.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mateos, Luciano & Oyonarte, Nicolas A., 2005. "A spreadsheet model to evaluate sloping furrow irrigation accounting for infiltration variability," Agricultural Water Management, Elsevier, vol. 76(1), pages 62-75, July.
    2. Mailhol, Jean Claude & Priol, Morgan & Benali, Mohamed, 1999. "A furrow irrigation model to improve irrigation practices in the Gharb valley of Morocco," Agricultural Water Management, Elsevier, vol. 42(1), pages 65-80, September.
    3. Amer, Abdelmonem Mohamed, 2011. "Effects of water infiltration and storage in cultivated soil on surface irrigation," Agricultural Water Management, Elsevier, vol. 98(5), pages 815-822, March.
    4. Salahou, Mohamed Khaled & Jiao, Xiyun & Lü, Haishen, 2018. "Border irrigation performance with distance-based cut-off," Agricultural Water Management, Elsevier, vol. 201(C), pages 27-37.
    5. Koech, R.K. & Smith, R.J. & Gillies, M.H., 2014. "Evaluating the performance of a real-time optimisation system for furrow irrigation," Agricultural Water Management, Elsevier, vol. 142(C), pages 77-87.
    6. Faci, J. M. & Bensaci, A. & Slatni, A. & Playan, E., 2000. "A case study for irrigation modernisation: I. Characterisation of the district and analysis of water delivery records," Agricultural Water Management, Elsevier, vol. 42(3), pages 313-334, January.
    7. Morris, Michael R. & Hussain, Amjed & Gillies, Malcolm H. & O’Halloran, Nicholas J., 2015. "Inflow rate and border irrigation performance," Agricultural Water Management, Elsevier, vol. 155(C), pages 76-86.
    8. González, César & Cervera, Luis & Moret-Fernández, David, 2011. "Basin irrigation design with longitudinal slope," Agricultural Water Management, Elsevier, vol. 98(10), pages 1516-1522, August.
    9. Smith, R.J. & Uddin, M.J. & Gillies, M.H., 2018. "Estimating irrigation duration for high performance furrow irrigation on cracking clay soils," Agricultural Water Management, Elsevier, vol. 206(C), pages 78-85.
    10. Akbari, Mahmood & Gheysari, Mahdi & Mostafazadeh-Fard, Behrouz & Shayannejad, Mohammad, 2018. "Surface irrigation simulation-optimization model based on meta-heuristic algorithms," Agricultural Water Management, Elsevier, vol. 201(C), pages 46-57.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mazarei, Reza & Soltani Mohammadi, Amir & Ebrahimian, Hamed & Naseri, Abd Ali, 2021. "Temporal variability of infiltration and roughness coefficients and furrow irrigation performance under different inflow rates," Agricultural Water Management, Elsevier, vol. 245(C).
    2. Zhongwei Liang & Tao Zou & Yupeng Zhang & Jinrui Xiao & Xiaochu Liu, 2022. "Sprinkler Drip Infiltration Quality Prediction for Moisture Space Distribution Using RSAE-NPSO," Agriculture, MDPI, vol. 12(5), pages 1-32, May.
    3. Ebrahimian, Hamed & Ghaffari, Parisa & Ghameshlou, Arezoo N. & Tabatabaei, Sayyed-Hassan & Alizadeh Dizaj, Amin, 2020. "Extensive comparison of various infiltration estimation methods for furrow irrigation under different field conditions," Agricultural Water Management, Elsevier, vol. 230(C).
    4. Mehri, Akbar & Mohammadi, Amir Soltani & Ebrahimian, Hamed & Boroomandnasab, Saeid, 2023. "Evaluation and optimization of surge and alternate furrow irrigation performance in maize fields using the WinSRFR software," Agricultural Water Management, Elsevier, vol. 276(C).
    5. Mazarei, Reza & Mohammadi, Amir Soltani & Naseri, Abd Ali & Ebrahimian, Hamed & Izadpanah, Zahra, 2020. "Optimization of furrow irrigation performance of sugarcane fields based on inflow and geometric parameters using WinSRFR in Southwest of Iran," Agricultural Water Management, Elsevier, vol. 228(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohamed Khaled Salahou & Xiyun Jiao & Haishen Lü & Weihua Guo, 2020. "An improved approach to estimating the infiltration characteristics in surface irrigation systems," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-16, June.
    2. Costabile, Pierfranco & Costanzo, Carmelina & Gangi, Fabiola & De Gaetani, Carlo Iapige & Rossi, Lorenzo & Gandolfi, Claudio & Masseroni, Daniele, 2023. "High-resolution 2D modelling for simulating and improving the management of border irrigation," Agricultural Water Management, Elsevier, vol. 275(C).
    3. Nie, Wei-Bo & Dong, Shu-Xin & Li, Yi-Bo & Ma, Xiao-Yi, 2021. "Optimization of the border size on the irrigation district scale – Example of the Hetao irrigation district," Agricultural Water Management, Elsevier, vol. 248(C).
    4. Pazouki, Ehsan, 2021. "A practical surface irrigation design based on fuzzy logic and meta-heuristic algorithms," Agricultural Water Management, Elsevier, vol. 256(C).
    5. Mehri, Akbar & Mohammadi, Amir Soltani & Ebrahimian, Hamed & Boroomandnasab, Saeid, 2023. "Evaluation and optimization of surge and alternate furrow irrigation performance in maize fields using the WinSRFR software," Agricultural Water Management, Elsevier, vol. 276(C).
    6. Pazouki, Ehsan, 2021. "A practical surface irrigation system design based on volume balance model and multi-objective evolutionary optimization algorithms," Agricultural Water Management, Elsevier, vol. 248(C).
    7. Pazouki, Ehsan, 2023. "A smart surface irrigation design based on the topographical and geometrical shape characteristics of the land," Agricultural Water Management, Elsevier, vol. 275(C).
    8. Mazarei, Reza & Soltani Mohammadi, Amir & Ebrahimian, Hamed & Naseri, Abd Ali, 2021. "Temporal variability of infiltration and roughness coefficients and furrow irrigation performance under different inflow rates," Agricultural Water Management, Elsevier, vol. 245(C).
    9. Mazarei, Reza & Mohammadi, Amir Soltani & Naseri, Abd Ali & Ebrahimian, Hamed & Izadpanah, Zahra, 2020. "Optimization of furrow irrigation performance of sugarcane fields based on inflow and geometric parameters using WinSRFR in Southwest of Iran," Agricultural Water Management, Elsevier, vol. 228(C).
    10. Salahou, Mohamed Khaled & Jiao, Xiyun & Lü, Haishen, 2018. "Border irrigation performance with distance-based cut-off," Agricultural Water Management, Elsevier, vol. 201(C), pages 27-37.
    11. Xu, Jiatun & Cai, Huanjie & Saddique, Qaisar & Wang, Xiaoyun & Li, Liang & Ma, Chenguang & Lu, Yajun, 2019. "Evaluation and optimization of border irrigation in different irrigation seasons based on temporal variation of infiltration and roughness," Agricultural Water Management, Elsevier, vol. 214(C), pages 64-77.
    12. Akbari, Mahmood & Gheysari, Mahdi & Mostafazadeh-Fard, Behrouz & Shayannejad, Mohammad, 2018. "Surface irrigation simulation-optimization model based on meta-heuristic algorithms," Agricultural Water Management, Elsevier, vol. 201(C), pages 46-57.
    13. Barros, R. & Isidoro, D. & Aragüés, R., 2011. "Long-term water balances in La Violada irrigation district (Spain): I. Sequential assessment and minimization of closing errors," Agricultural Water Management, Elsevier, vol. 102(1), pages 35-45.
    14. Jovanovic, N. & Pereira, L.S. & Paredes, P. & Pôças, I. & Cantore, V. & Todorovic, M., 2020. "A review of strategies, methods and technologies to reduce non-beneficial consumptive water use on farms considering the FAO56 methods," Agricultural Water Management, Elsevier, vol. 239(C).
    15. Unal, H. B. & Asik, S. & Avci, M. & Yasar, S. & Akkuzu, E., 2004. "Performance of water delivery system at tertiary canal level: a case study of the Menemen Left Bank Irrigation System, Gediz Basin, Turkey," Agricultural Water Management, Elsevier, vol. 65(3), pages 155-171, March.
    16. Jiménez-Aguirre, M.T. & Isidoro, D., 2018. "Hydrosaline Balance in and Nitrogen Loads from an irrigation district before and after modernization," Agricultural Water Management, Elsevier, vol. 208(C), pages 163-175.
    17. Kaihua Liu & Xiyun Jiao & Weihua Guo & Yunhao An & Mohamed Khaled Salahou, 2020. "Improving border irrigation performance with predesigned varied-discharge," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-12, May.
    18. Sebastián Fuentes & Carlos Fuentes & Heber Saucedo & Carlos Chávez, 2022. "Border Irrigation Modeling with the Barré de Saint-Venant and Green and Ampt Equations," Mathematics, MDPI, vol. 10(7), pages 1-12, March.
    19. Taky, A. & Mailhol, J.C. & Belaud, G., 2009. "Using a furrow system for surface drainage under unsteady rain," Agricultural Water Management, Elsevier, vol. 96(7), pages 1128-1136, July.
    20. Dechmi, F. & Playan, E. & Faci, J. M. & Tejero, M., 2003. "Analysis of an irrigation district in northeastern Spain: I. Characterisation and water use assessment," Agricultural Water Management, Elsevier, vol. 61(2), pages 75-92, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:221:y:2019:i:c:p:58-65. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.