IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v142y2014icp99-109.html
   My bibliography  Save this article

Plant-based sensing to monitor water stress: Applicability to commercial orchards

Author

Listed:
  • Fernández, J.E.

Abstract

Despite their potential for water stress monitoring, sap flow (SF), trunk diameter variation (TDV) and leaf turgor pressure (LTP) related measurements are rarely used in commercial orchards. The reasons for this lack of popularity are analysed here, as well as possible solutions for the identified limitations. I worked with data collected from different olive orchards as well as with findings from the literature reported for other fruit tree species. SF sensors are difficult to install but easy to maintain. TDV sensors are easier to install, but require greater maintenance. Both methods are highly demanding in terms of data processing, especially sap flow. The usefulness of SF records for monitoring water stress is curtailed on recovery periods, due to the delayed recovery of stomatal conductance. TDV records, on the other hand, depend on plant water status, but also on plant age, phenological stage and crop load, among other factors. For correct data interpretation, therefore, a deep understanding of the response of the monitored variable to plant and environmental conditions is required. For LTP related measurements we used ZIM probes. They showed to be easy to install and use, and robust enough to withstand field conditions for long irrigation seasons. Severe water stress, however, limited their performance. New approaches are being developed to increase the potential of the tested methods for being used in commercial orchards. These include combining the plant-based methods with remote imagery, deriving more user-friendly water stress indices from the collected records and hiring the services of specialized companies which provide the user with easy-to-interpret summaries of the collected information. With the help of new tools and applications, and the hiring of specialized companies if required, the assessed plant-based methods can be reliable and profitable tools for monitoring water stress and scheduling irrigation in commercial orchards.

Suggested Citation

  • Fernández, J.E., 2014. "Plant-based sensing to monitor water stress: Applicability to commercial orchards," Agricultural Water Management, Elsevier, vol. 142(C), pages 99-109.
  • Handle: RePEc:eee:agiwat:v:142:y:2014:i:c:p:99-109
    DOI: 10.1016/j.agwat.2014.04.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037837741400136X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2014.04.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Agam, N. & Cohen, Y. & Berni, J.A.J. & Alchanatis, V. & Kool, D. & Dag, A. & Yermiyahu, U. & Ben-Gal, A., 2013. "An insight to the performance of crop water stress index for olive trees," Agricultural Water Management, Elsevier, vol. 118(C), pages 79-86.
    2. Ben-Gal, Alon & Kool, Dilia & Agam, Nurit & van Halsema, Gerardo E. & Yermiyahu, Uri & Yafe, Ariel & Presnov, Eugene & Erel, Ran & Majdop, Ahmed & Zipori, Isaac & Segal, Eran & Rüger, Simon & Zimmerma, 2010. "Whole-tree water balance and indicators for short-term drought stress in non-bearing 'Barnea' olives," Agricultural Water Management, Elsevier, vol. 98(1), pages 124-133, December.
    3. Cuevas, M.V. & Torres-Ruiz, J.M. & Álvarez, R. & Jiménez, M.D. & Cuerva, J. & Fernández, J.E., 2010. "Assessment of trunk diameter variation derived indices as water stress indicators in mature olive trees," Agricultural Water Management, Elsevier, vol. 97(9), pages 1293-1302, September.
    4. Fernández, J.E. & Rodriguez-Dominguez, C.M. & Perez-Martin, A. & Zimmermann, U. & Rüger, S. & Martín-Palomo, M.J. & Torres-Ruiz, J.M. & Cuevas, M.V. & Sann, C. & Ehrenberger, W. & Diaz-Espejo, A., 2011. "Online-monitoring of tree water stress in a hedgerow olive orchard using the leaf patch clamp pressure probe," Agricultural Water Management, Elsevier, vol. 100(1), pages 25-35.
    5. Fernández, J.E. & Torres-Ruiz, J.M. & Diaz-Espejo, A. & Montero, A. & Álvarez, R. & Jiménez, M.D. & Cuerva, J. & Cuevas, M.V., 2011. "Use of maximum trunk diameter measurements to detect water stress in mature 'Arbequina' olive trees under deficit irrigation," Agricultural Water Management, Elsevier, vol. 98(12), pages 1813-1821, October.
    6. Fernandez, J. E. & Palomo, M. J. & Diaz-Espejo, A. & Clothier, B. E. & Green, S. R. & Giron, I. F. & Moreno, F., 2001. "Heat-pulse measurements of sap flow in olives for automating irrigation: tests, root flow and diagnostics of water stress," Agricultural Water Management, Elsevier, vol. 51(2), pages 99-123, October.
    7. Ortuño, M.F. & Conejero, W. & Moreno, F. & Moriana, A. & Intrigliolo, D.S. & Biel, C. & Mellisho, C.D. & Pérez-Pastor, A. & Domingo, R. & Ruiz-Sánchez, M.C. & Casadesus, J. & Bonany, J. & Torrecillas,, 2010. "Could trunk diameter sensors be used in woody crops for irrigation scheduling? A review of current knowledge and future perspectives," Agricultural Water Management, Elsevier, vol. 97(1), pages 1-11, January.
    8. Intrigliolo, D.S. & Castel, J.R., 2006. "Performance of various water stress indicators for prediction of fruit size response to deficit irrigation in plum," Agricultural Water Management, Elsevier, vol. 83(1-2), pages 173-180, May.
    9. Moriana, A. & Girón, I.F. & Martín-Palomo, M.J. & Conejero, W. & Ortuño, M.F. & Torrecillas, A. & Moreno, F., 2010. "New approach for olive trees irrigation scheduling using trunk diameter sensors," Agricultural Water Management, Elsevier, vol. 97(11), pages 1822-1828, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Padilla-Díaz, C.M. & Rodriguez-Dominguez, C.M. & Hernandez-Santana, V. & Perez-Martin, A. & Fernández, J.E., 2016. "Scheduling regulated deficit irrigation in a hedgerow olive orchard from leaf turgor pressure related measurements," Agricultural Water Management, Elsevier, vol. 164(P1), pages 28-37.
    2. Pérez-López, D. & Pérez-Rodríguez, J.M. & Moreno, M.M. & Prieto, M.H. & Ramírez-Santa-Pau, M. & Gijón, M.C. & Guerrero, J. & Moriana, A., 2013. "Influence of different cultivars–locations on maximum daily shrinkage indicators: Limits to the reference baseline approach," Agricultural Water Management, Elsevier, vol. 127(C), pages 31-39.
    3. Silber, A. & Naor, A. & Israeli, Y. & Assouline, S., 2013. "Combined effect of irrigation regime and fruit load on the patterns of trunk-diameter variation of ‘Hass’ avocado at different phenological periods," Agricultural Water Management, Elsevier, vol. 129(C), pages 87-94.
    4. Alcaras, L. Martín Agüero & Rousseaux, M. Cecilia & Searles, Peter S., 2016. "Responses of several soil and plant indicators to post-harvest regulated deficit irrigation in olive trees and their potential for irrigation scheduling," Agricultural Water Management, Elsevier, vol. 171(C), pages 10-20.
    5. Martín-Palomo, M.J. & Corell, M. & Andreu, L. & López-Moreno, Y.E. & Galindo, A. & Moriana, A., 2021. "Identification of water stress conditions in olive trees through frequencies of trunk growth rate," Agricultural Water Management, Elsevier, vol. 247(C).
    6. Corell, M. & Martín-Palomo, M.J. & Girón, I. & Andreu, L. & Trigo, E. & López-Moreno, Y.E. & Torrecillas, A. & Centeno, A. & Pérez-López, D. & Moriana, A., 2019. "Approach using trunk growth rate data to identify water stress conditions in olive trees," Agricultural Water Management, Elsevier, vol. 222(C), pages 12-20.
    7. Du, Shaoqing & Tong, Ling & Zhang, Xiaotao & Kang, Shaozhong & Du, Taisheng & Li, Sien & Ding, Risheng, 2017. "Signal intensity based on maximum daily stem shrinkage can reflect the water status of apple trees under alternate partial root-zone irrigation," Agricultural Water Management, Elsevier, vol. 190(C), pages 21-30.
    8. Rodriguez-Dominguez, C.M. & Ehrenberger, W. & Sann, C. & Rüger, S. & Sukhorukov, V. & Martín-Palomo, M.J. & Diaz-Espejo, A. & Cuevas, M.V. & Torres-Ruiz, J.M. & Perez-Martin, A. & Zimmermann, U. & Fer, 2012. "Concomitant measurements of stem sap flow and leaf turgor pressure in olive trees using the leaf patch clamp pressure probe," Agricultural Water Management, Elsevier, vol. 114(C), pages 50-58.
    9. Chehab, Hechmi & Tekaya, Mariem & Mechri, Beligh & Jemai, Abdelmajid & Guiaa, Mohamed & Mahjoub, Zoubeir & Boujnah, Dalenda & Laamari, Salwa & Chihaoui, Badreddine & Zakhama, Houda & Hammami, Mohamed , 2017. "Effect of the Super Absorbent Polymer Stockosorb® on leaf turgor pressure, tree performance and oil quality of olive trees cv. Chemlali grown under field conditions in an arid region of Tunisia," Agricultural Water Management, Elsevier, vol. 192(C), pages 221-231.
    10. Abdelfatah, Ashraf & Aranda, Xavier & Savé, Robert & de Herralde, Felicidad & Biel, Carmen, 2013. "Evaluation of the response of maximum daily shrinkage in young cherry trees submitted to water stress cycles in a greenhouse," Agricultural Water Management, Elsevier, vol. 118(C), pages 150-158.
    11. García-Tejero, I.F. & Hernández, A. & Padilla-Díaz, C.M. & Diaz-Espejo, A. & Fernández, J.E, 2017. "Assessing plant water status in a hedgerow olive orchard from thermography at plant level," Agricultural Water Management, Elsevier, vol. 188(C), pages 50-60.
    12. Martín-Palomo, MJ & Andreu, L. & Pérez-López, D. & Centeno, A. & Galindo, A. & Moriana, A. & Corell, M., 2022. "Trunk growth rate frequencies as water stress indicator in almond trees," Agricultural Water Management, Elsevier, vol. 271(C).
    13. Egea, Gregorio & Fernández, José E. & Alcon, Francisco, 2017. "Financial assessment of adopting irrigation technology for plant-based regulated deficit irrigation scheduling in super high-density olive orchards," Agricultural Water Management, Elsevier, vol. 187(C), pages 47-56.
    14. Girón, I.F. & Corell, M. & Martín-Palomo, M.J. & Galindo, A. & Torrecillas, A. & Moreno, F. & Moriana, A., 2016. "Limitations and usefulness of maximum daily shrinkage (MDS) and trunk growth rate (TGR) indicators in the irrigation scheduling of table olive trees," Agricultural Water Management, Elsevier, vol. 164(P1), pages 38-45.
    15. De la Rosa, J.M. & Domingo, R. & Gómez-Montiel, J. & Pérez-Pastor, A., 2015. "Implementing deficit irrigation scheduling through plant water stress indicators in early nectarine trees," Agricultural Water Management, Elsevier, vol. 152(C), pages 207-216.
    16. Padilla-Díaz, C.M. & Rodriguez-Dominguez, C.M. & Hernandez-Santana, V. & Perez-Martin, A. & Fernandes, R.D.M. & Montero, A. & García, J.M. & Fernández, J.E., 2018. "Water status, gas exchange and crop performance in a super high density olive orchard under deficit irrigation scheduled from leaf turgor measurements," Agricultural Water Management, Elsevier, vol. 202(C), pages 241-252.
    17. Aureliano C. Malheiro & Mafalda Pires & Nuno Conceição & Ana M. Claro & Lia-Tânia Dinis & José Moutinho-Pereira, 2020. "Linking Sap Flow and Trunk Diameter Measurements to Assess Water Dynamics of Touriga-Nacional Grapevines Trained in Cordon and Guyot Systems," Agriculture, MDPI, vol. 10(8), pages 1-15, August.
    18. Fernández, J.E. & Rodriguez-Dominguez, C.M. & Perez-Martin, A. & Zimmermann, U. & Rüger, S. & Martín-Palomo, M.J. & Torres-Ruiz, J.M. & Cuevas, M.V. & Sann, C. & Ehrenberger, W. & Diaz-Espejo, A., 2011. "Online-monitoring of tree water stress in a hedgerow olive orchard using the leaf patch clamp pressure probe," Agricultural Water Management, Elsevier, vol. 100(1), pages 25-35.
    19. Vita Serman, Facundo & Orgaz, Francisco & Starobinsky, Gabriela & Capraro, Flavio & Fereres, Elias, 2021. "Water productivity and net profit of high-density olive orchards in San Juan, Argentina," Agricultural Water Management, Elsevier, vol. 252(C).
    20. Fernandes, R.D.M. & Egea, G. & Hernandez-Santana, V. & Diaz-Espejo, A. & Fernández, J.E. & Perez-Martin, A. & Cuevas, M.V., 2021. "Response of vegetative and fruit growth to the soil volume wetted by irrigation in a super-high-density olive orchard," Agricultural Water Management, Elsevier, vol. 258(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:142:y:2014:i:c:p:99-109. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.