IDEAS home Printed from https://ideas.repec.org/a/ebl/ecbull/eb-19-00241.html
   My bibliography  Save this article

A note on Gini Principal Component Analysis

Author

Listed:
  • Téa Ouraga

    () (Université de Nîmes - Laboratoire CHROME)

Abstract

In this paper, a principal component analysis based on the Gini index - Gini PCA - is proposed in order to deal with contaminated samples. The operator underlying the Gini index is a covariance-based operator, which provides a l1 metric well suited for dealing with outliers. It is shown, with simple Monte Carlo experiments, that the results of the standard Principal Component Analysis (PCA) may be drastically aff ected whereas some robustness holds with Gini PCA.

Suggested Citation

  • Téa Ouraga, 2019. "A note on Gini Principal Component Analysis," Economics Bulletin, AccessEcon, vol. 39(2), pages 1076-1083.
  • Handle: RePEc:ebl:ecbull:eb-19-00241
    as

    Download full text from publisher

    File URL: http://www.accessecon.com/Pubs/EB/2019/Volume39/EB-19-V39-I2-P102.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Shlomo Yitzhaki, 2003. "Gini’s Mean difference: a superior measure of variability for non-normal distributions," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(2), pages 285-316.
    2. Shlomo Yitzhaki & Peter Lambert, 2013. "The relationship between the absolute deviation from a quantile and Gini’s mean difference," METRON, Springer;Sapienza Università di Roma, vol. 71(2), pages 97-104, September.
    3. E. Schechtman & S. Yitzhaki, 2003. "A Family of Correlation Coefficients Based on the Extended Gini Index," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 1(2), pages 129-146, August.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Gini; PCA; Robutsness;

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C4 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ebl:ecbull:eb-19-00241. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (John P. Conley). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.