IDEAS home Printed from https://ideas.repec.org/a/cup/endeec/v17y2012i06p689-713_00.html
   My bibliography  Save this article

Energy and climate change in China

Author

Listed:
  • Carraro, Carlo
  • Massetti, Emanuele

Abstract

This paper examines future energy and emissions scenarios in China generated by the Integrated Assessment Model WITCH. A Business-as-Usual scenario is compared with five scenarios in which greenhouse gases emissions are taxed, at different levels. The elasticity of China's emissions is estimated by pooling observations from all scenarios and comparing them with the elasticity of emissions in OECD countries. China has a higher elasticity than the OECD for a carbon tax lower than US$50 per ton of CO2-eq. For higher taxes, emissions in OECD economies are more elastic than in China. Our best guess indicates that China would need to introduce a tax equal to about US$750 per ton of CO2-eq in 2050 to achieve the Major Economies Forum goal set for mid-century. In our preferred estimates, the discounted cost of following the 2°C trajectory is equal to 5.4 per cent and to 2.7 per cent of GDP in China and the OECD, respectively.

Suggested Citation

  • Carraro, Carlo & Massetti, Emanuele, 2012. "Energy and climate change in China," Environment and Development Economics, Cambridge University Press, vol. 17(6), pages 689-713, December.
  • Handle: RePEc:cup:endeec:v:17:y:2012:i:06:p:689-713_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S1355770X12000228/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Bosetti, Valentina & Carraro, Carlo & Massetti, Emanuele & Tavoni, Massimo, 2008. "International energy R&D spillovers and the economics of greenhouse gas atmospheric stabilization," Energy Economics, Elsevier, vol. 30(6), pages 2912-2929, November.
    2. Valentina Bosetti & Carlo Carraro & Marzio Galeotti & Emanuele Massetti & Massimo Tavoni, 2006. "WITCH. A World Induced Technical Change Hybrid Model," Working Papers 2006_46, Department of Economics, University of Venice "Ca' Foscari".
    3. Nordhaus, William D & Yang, Zili, 1996. "A Regional Dynamic General-Equilibrium Model of Alternative Climate-Change Strategies," American Economic Review, American Economic Association, vol. 86(4), pages 741-765, September.
    4. Zhongxiang Zhang, 2011. "In what format and under what timeframe would China take on climate commitments? A roadmap to 2050," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 11(3), pages 245-259, September.
    5. Cai, Wenjia & Wang, Can & Chen, Jining & Wang, Ke & Zhang, Ying & Lu, Xuedu, 2008. "Comparison of CO2 emission scenarios and mitigation opportunities in China's five sectors in 2020," Energy Policy, Elsevier, vol. 36(3), pages 1181-1194, March.
    6. Valentina Bosetti & Jeffrey Frankel, 2012. "Politically Feasible Emissions Targets to Attain 460 ppm CO 2 Concentrations," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 6(1), pages 86-109.
    7. Carlo Carraro & Emanuele Massetti, 2012. "Beyond Copenhagen: a realistic climate policy in a fragmented world," Climatic Change, Springer, vol. 110(3), pages 523-542, February.
    8. Emanuele Massetti, 2011. "Carbon tax scenarios for China and India: exploring politically feasible mitigation goals," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 11(3), pages 209-227, September.
    9. Bosetti, Valentina & De Cian, Enrica & Sgobbi, Alessandra & Tavoni, Massimo, 2009. "The 2008 WITCH Model: New Model Features and Baseline," Sustainable Development Papers 55284, Fondazione Eni Enrico Mattei (FEEM).
    10. Bosetti, Valentina & Carraro, Carlo & Massetti, Emanuele & Sgobbi, Alessandra & Tavoni, Massimo, 2009. "Optimal energy investment and R&D strategies to stabilize atmospheric greenhouse gas concentrations," Resource and Energy Economics, Elsevier, vol. 31(2), pages 123-137, May.
    11. van Vuuren, Detlef & Fengqi, Zhou & Vries, Bert de & Kejun, Jiang & Graveland, Cor & Yun, Li, 2003. "Energy and emission scenarios for China in the 21st century--exploration of baseline development and mitigation options," Energy Policy, Elsevier, vol. 31(4), pages 369-387, March.
    12. World Bank, 2009. "World Development Indicators 2009," World Bank Publications - Books, The World Bank Group, number 4367.
    13. World Bank, 2006. "World Development Indicators 2006," World Bank Publications - Books, The World Bank Group, number 8151.
    14. ZhongXiang Zhang, 2011. "Energy and Environmental Policy in China," Books, Edward Elgar Publishing, number 13559.
    15. Zhou, Nan & Levine, Mark D. & Price, Lynn, 2010. "Overview of current energy-efficiency policies in China," Energy Policy, Elsevier, vol. 38(11), pages 6439-6452, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Emanuele Massetti, 2011. "Carbon tax scenarios for China and India: exploring politically feasible mitigation goals," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 11(3), pages 209-227, September.
    2. Yingying Lu & David I. Stern, 2016. "Substitutability and the Cost of Climate Mitigation Policy," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 64(1), pages 81-107, May.
    3. Tiaoye Li & Lingjiang Tao & Mi Zhang, 2024. "Projection of Non-Industrial Electricity Consumption in China’s Pearl River Delta under Global Warming Scenarios," Sustainability, MDPI, vol. 16(5), pages 1-17, February.
    4. Li, Chuan-Zhong & Wei, Chu & Yu, Yang, 2020. "Income threshold, household appliance ownership and residential energy consumption in urban China," China Economic Review, Elsevier, vol. 60(C).
    5. Hübler, Michael & Voigt, Sebastian & Löschel, Andreas, 2014. "Designing an emissions trading scheme for China—An up-to-date climate policy assessment," Energy Policy, Elsevier, vol. 75(C), pages 57-72.
    6. Carlo Carraro & Emanuele Massetti, 2012. "Beyond Copenhagen: a realistic climate policy in a fragmented world," Climatic Change, Springer, vol. 110(3), pages 523-542, February.
    7. Vicki Duscha & Katja Schumacher & Joachim Schleich & Pierre Buisson, 2014. "Costs of meeting international climate targets without nuclear power," Climate Policy, Taylor & Francis Journals, vol. 14(3), pages 327-352, May.
    8. Lu, Yingying & Stegman, Alison & Cai, Yiyong, 2013. "Emissions intensity targeting: From China's 12th Five Year Plan to its Copenhagen commitment," Energy Policy, Elsevier, vol. 61(C), pages 1164-1177.
    9. Perrings, Charles, 2014. "Environment and development economics 20 years on," Environment and Development Economics, Cambridge University Press, vol. 19(3), pages 333-366, June.
    10. Massetti, Emanuele & Tavoni, Massimo, 2012. "A developing Asia emission trading scheme (Asia ETS)," Energy Economics, Elsevier, vol. 34(S3), pages 436-443.
    11. Pedro Antonio Martín Cervantes & Nuria Rueda López & Salvador Cruz Rambaud, 2020. "Life Expectancy at Birth in Europe: An Econometric Approach Based on Random Forests Methodology," Sustainability, MDPI, vol. 12(1), pages 1-17, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emanuele Massetti, 2011. "Carbon tax scenarios for China and India: exploring politically feasible mitigation goals," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 11(3), pages 209-227, September.
    2. Carlo Carraro & Enrica De Cian & Lea Nicita, 2009. "Modeling Biased Technical Change. Implications For Climate Policy," Working Papers 2009_27, Department of Economics, University of Venice "Ca' Foscari".
    3. Zhang, ZhongXiang, 2014. "Programs, Prices and Policies Towards Energy Conservation and Environmental Quality in China," Working Papers 249427, Australian National University, Centre for Climate Economics & Policy.
    4. Emanuele Massetti & Lea Nicita, 2010. "The Optimal Climate Policy Portfolio when Knowledge Spills across Sectors," CESifo Working Paper Series 2988, CESifo.
    5. Zhang, ZhongXiang, 2013. "Energy and Environmental Issues and Policy in China," Climate Change and Sustainable Development 162375, Fondazione Eni Enrico Mattei (FEEM).
    6. Alice Favero & Robert Mendelsohn, 2013. "Evaluating the Global Role of Woody Biomass as a Mitigation Strategy," Working Papers 2013.37, Fondazione Eni Enrico Mattei.
    7. De Cian, Enrica & Tavoni, Massimo, 2012. "Do technology externalities justify restrictions on emission permit trading?," Resource and Energy Economics, Elsevier, vol. 34(4), pages 624-646.
    8. Chris Belmert Milindi & Roula Inglesi-Lotz, 2023. "Impact of technological progress on carbon emissions in different country income groups," Energy & Environment, , vol. 34(5), pages 1348-1382, August.
    9. Carraro, Carlo & Favero, Alice & Massetti, Emanuele, 2012. "“Investments and public finance in a green, low carbon, economy”," Energy Economics, Elsevier, vol. 34(S1), pages 15-28.
    10. Bastianin, Andrea & Favero, Alice & Massetti, Emanuele, 2010. "Investments and Financial Flows Induced by Climate Mitigation Policies," Sustainable Development Papers 59418, Fondazione Eni Enrico Mattei (FEEM).
    11. Gu, Gaoxiang & Wang, Zheng, 2018. "China’s carbon emissions abatement under industrial restructuring by investment restriction," Structural Change and Economic Dynamics, Elsevier, vol. 47(C), pages 133-144.
    12. J. Farmer & Cameron Hepburn & Penny Mealy & Alexander Teytelboym, 2015. "A Third Wave in the Economics of Climate Change," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 62(2), pages 329-357, October.
    13. Favero, Alice & Massetti, Emanuele, 2014. "Trade of woody biomass for electricity generation under climate mitigation policy," Resource and Energy Economics, Elsevier, vol. 36(1), pages 166-190.
    14. Alice Favero & Robert Mendelsohn, 2014. "Using Markets for Woody Biomass Energy to Sequester Carbon in Forests," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 1(1), pages 75-95.
    15. Steckel, Jan Christoph & Jakob, Michael & Marschinski, Robert & Luderer, Gunnar, 2011. "From carbonization to decarbonization?--Past trends and future scenarios for China's CO2 emissions," Energy Policy, Elsevier, vol. 39(6), pages 3443-3455, June.
    16. Bosetti, Valentina & Carraro, Carlo & Duval, Romain & Tavoni, Massimo, 2011. "What should we expect from innovation? A model-based assessment of the environmental and mitigation cost implications of climate-related R&D," Energy Economics, Elsevier, vol. 33(6), pages 1313-1320.
    17. Awaworyi Churchill, Sefa & Inekwe, John & Smyth, Russell & Zhang, Xibin, 2019. "R&D intensity and carbon emissions in the G7: 1870–2014," Energy Economics, Elsevier, vol. 80(C), pages 30-37.
    18. ZhongXiang Zhang, 2017. "Are China's climate commitments in a post‐Paris agreement sufficiently ambitious?," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 8(2), March.
    19. Mort Webster & Karen Fisher-Vanden & David Popp & Nidhi Santen, 2017. "Should We Give Up after Solyndra? Optimal Technology R&D Portfolios under Uncertainty," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 4(S1), pages 123-151.
    20. Rogna, Marco & Vogt, Carla J., 2021. "Accounting for inequality aversion can justify the 2° C goal," Ruhr Economic Papers 925, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.

    More about this item

    JEL classification:

    • F5 - International Economics - - International Relations, National Security, and International Political Economy
    • Q1 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • Q58 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Government Policy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:endeec:v:17:y:2012:i:06:p:689-713_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ede .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.