IDEAS home Printed from https://ideas.repec.org/a/cii/cepiie/2020-q3-163-12.html
   My bibliography  Save this article

A real time leading economic indicator based on text mining for the Spanish economy. Fractional cointegration VAR and Continuous Wavelet Transform analysis

Author

Listed:
  • Carlos Poza
  • Manuel Monge

Abstract

The main aim of this paper is to build a Real Time Leading Economic Indicator (RT-LEI) that improves Composite Leading Indicators (CLI)’s performance to anticipate GDP trends and turning points for the Spanish economy. The indicator has been constructed using a Factor Analysis and is composed of 21 variables concerning motor vehicle activity, financial activity, real estate activity, economic sentiment, and industrial sector. The data sources used are Google Trends and Thomson Reuters Eikon-Datastream. This work contributes to the literature, studying the dynamics of GDP, CLI and RT-LEI using Fractional Cointegration VAR (FCVAR model) and Continuous Wavelet Transform (CWT) for its resolution. The results show that the model does not present mean reversion and it is expected the RT-LEI reveals a bear trend in the next two years, alike IMF and Consensus FUNCAS' forecasts. The reasons are mostly associated with escalating global protectionism, uncertainty related to Catalonia and faster monetary policy normalization.

Suggested Citation

  • Carlos Poza & Manuel Monge, 2020. "A real time leading economic indicator based on text mining for the Spanish economy. Fractional cointegration VAR and Continuous Wavelet Transform analysis," International Economics, CEPII research center, issue 163, pages 163-175.
  • Handle: RePEc:cii:cepiie:2020-q3-163-12
    as

    Download full text from publisher

    File URL: https://www.sciencedirect.com/science/article/pii/S2110701719302008
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gutiérrez, Antonio, 2023. "La brecha de género en el emprendimiento y la cultura emprendedora: Evidencia con Google Trends [Entrepreneurship gender gap and entrepreneurial culture: Evidence from Google Trends]," MPRA Paper 115876, University Library of Munich, Germany.
    2. Monge, Manuel & Poza, Carlos & Borgia, Sofía, 2022. "A proposal of a suspicion of tax fraud indicator based on Google trends to foresee Spanish tax revenues," International Economics, Elsevier, vol. 169(C), pages 1-12.
    3. Rodrigo Mulero & Alfredo García-Hiernaux, 2021. "Forecasting Spanish unemployment with Google Trends and dimension reduction techniques," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 12(3), pages 329-349, September.
    4. Monge, Manuel & Claudio-Quiroga, Gloria & Poza, Carlos, 2024. "Chinese economic behavior in times of covid-19. A new leading economic indicator based on Google trends," International Economics, Elsevier, vol. 177(C).
    5. Monge, Manuel & Romero Rojo, María Fátima & Gil-Alana, Luis Alberiko, 2023. "The impact of geopolitical risk on the behavior of oil prices and freight rates," Energy, Elsevier, vol. 269(C).
    6. Monge, Manuel & Lazcano, Ana & Parada, José Luis, 2023. "Growth vs value investing: Persistence and time trend before and after COVID-19," Research in International Business and Finance, Elsevier, vol. 65(C).
    7. Gutierrez-Lythgoe, Antonio, 2023. "Redes y autoempleo: Evidencia con datos de Facebook [Networks and self-employment: Evidence from Facebook data]," MPRA Paper 116656, University Library of Munich, Germany.
    8. Monge, Manuel & Gil-Alana, Luis Alberiko, 2021. "Spatial crude oil production divergence and crude oil price behaviour in the United States," Energy, Elsevier, vol. 232(C).

    More about this item

    Keywords

    Leading economic indicators; Business cycle; Google trends; Fractional cointegration VAR; Wavelet analysis;
    All these keywords.

    JEL classification:

    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cii:cepiie:2020-q3-163-12. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/cepiifr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.