IDEAS home Printed from https://ideas.repec.org/a/caa/jnlcjg/v58y2022i2id51-2021-cjgpb.html
   My bibliography  Save this article

Breeding for salt tolerance in wheat: The contribution of carbon isotopic signatures

Author

Listed:
  • Chamekh Zoubeir

    (Carthage University, National Agronomic Research Institute of Tunisia, Tunis, Tunisia)

  • Ines Zouari

    (Sousse University, High School of Agriculture of Chott Meriem, Sousse, Tunisia
    Carthage University, National Agronomic Institute of Tunisia, Tunis, Tunisia)

  • Salma Jallouli

    (Carthage University, National Agronomic Institute of Tunisia, Tunis, Tunisia)

  • Sawsen Ayadi

    (Carthage University, National Agronomic Institute of Tunisia, Tunis, Tunisia)

  • Sebei Abdenour

    (Carthage University, National Agronomic Research Institute of Tunisia, Tunis, Tunisia)

  • Youssef Trifa

    (Carthage University, National Agronomic Institute of Tunisia, Tunis, Tunisia)

Abstract

Use of low-quality water for supplemental irrigation is expected to become soon a common practice in the Mediterranean area, where durum wheat is the main cultivated cereal. Breeding for salt stress tolerance may contribute to the improvement of wheat resilience to irrigation with brackish water. Various traits can be considered as indicators of salt stress tolerance, which include agronomical and physiological criteria. However, the complexity of salinity tolerance mechanisms, the G × E interaction and the lack of correlation between controlled and open field conditions causes uncertainty in the selection process. The present review highlights the main advantages and limitations of different agronomical and physiological traits used in screening for salt stress tolerance in wheat. Special focus is given to carbon and nitrogen isotope discrimination, that remains a bottleneck in breeding for salt stress tolerance. The use of different statistical tools to analyse data related to salt stress tolerance is also discussed in this review.

Suggested Citation

  • Chamekh Zoubeir & Ines Zouari & Salma Jallouli & Sawsen Ayadi & Sebei Abdenour & Youssef Trifa, 2022. "Breeding for salt tolerance in wheat: The contribution of carbon isotopic signatures," Czech Journal of Genetics and Plant Breeding, Czech Academy of Agricultural Sciences, vol. 58(2), pages 43-54.
  • Handle: RePEc:caa:jnlcjg:v:58:y:2022:i:2:id:51-2021-cjgpb
    DOI: 10.17221/51/2021-CJGPB
    as

    Download full text from publisher

    File URL: http://cjgpb.agriculturejournals.cz/doi/10.17221/51/2021-CJGPB.html
    Download Restriction: free of charge

    File URL: http://cjgpb.agriculturejournals.cz/doi/10.17221/51/2021-CJGPB.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.17221/51/2021-CJGPB?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andrew J Tanentzap & Anthony Lamb & Susan Walker & Andrew Farmer, 2015. "Resolving Conflicts between Agriculture and the Natural Environment," PLOS Biology, Public Library of Science, vol. 13(9), pages 1-13, September.
    2. Geerts, Sam & Raes, Dirk, 2009. "Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas," Agricultural Water Management, Elsevier, vol. 96(9), pages 1275-1284, September.
    3. Richards, Richard A., 2006. "Physiological traits used in the breeding of new cultivars for water-scarce environments," Agricultural Water Management, Elsevier, vol. 80(1-3), pages 197-211, February.
    4. Chamekh, Zoubeir & Karmous, Chahine & Ayadi, Sawsen & Sahli, Ali & Hammami, Zied & Belhaj Fraj, Makram & Benaissa, Nadhira & Trifa, Youssef & Slim-Amara, Hajer, 2015. "Stability analysis of yield component traits in 25 durum wheat (Triticum durum Desf.) genotypes under contrasting irrigation water salinity," Agricultural Water Management, Elsevier, vol. 152(C), pages 1-6.
    5. Memon, Shamim Ara & Sheikh, Irfan Ahemd & Talpur, Mashooque Ali & Mangrio, Munir Ahmed, 2021. "Impact of deficit irrigation strategies on winter wheat in semi-arid climate of sindh," Agricultural Water Management, Elsevier, vol. 243(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Uygan, Demet & Cetin, Oner & Alveroglu, Volkan & Sofuoglu, Aytug, 2021. "Improvement of water saving and economic productivity based on quotation with sugar content of sugar beet using linear move sprinkler irrigation," Agricultural Water Management, Elsevier, vol. 255(C).
    2. Komlan Koudahe & Aleksey Y. Sheshukov & Jonathan Aguilar & Koffi Djaman, 2021. "Irrigation-Water Management and Productivity of Cotton: A Review," Sustainability, MDPI, vol. 13(18), pages 1-21, September.
    3. Stepanovic, Strahinja & Rudnick, Daran & Kruger, Greg, 2021. "Impact of maize hybrid selection on water productivity under deficit irrigation in semiarid western Nebraska," Agricultural Water Management, Elsevier, vol. 244(C).
    4. Singh, Sukhbir & Angadi, Sangamesh V. & Grover, Kulbhushan K. & Hilaire, Rolston St. & Begna, Sultan, 2016. "Effect of growth stage based irrigation on soil water extraction and water use efficiency of spring safflower cultivars," Agricultural Water Management, Elsevier, vol. 177(C), pages 432-439.
    5. Andarzian, B. & Bannayan, M. & Steduto, P. & Mazraeh, H. & Barati, M.E. & Barati, M.A. & Rahnama, A., 2011. "Validation and testing of the AquaCrop model under full and deficit irrigated wheat production in Iran," Agricultural Water Management, Elsevier, vol. 100(1), pages 1-8.
    6. Ouellet, F. & Mundler, P. & Dupras, J. & Ruiz, J., 2020. "“Community developed and farmer delivered.” An analysis of the spatial and relational proximities of the Alternative Land Use Services program in Ontario," Land Use Policy, Elsevier, vol. 95(C).
    7. Koffi Djaman & Suat Irmak & Komlan Koudahe & Samuel Allen, 2021. "Irrigation Management in Potato ( Solanum tuberosum L.) Production: A Review," Sustainability, MDPI, vol. 13(3), pages 1-19, February.
    8. Saseendran, S.A. & Ahuja, Lajpat R. & Ma, Liwang & Trout, Thomas J. & McMaster, Gregory S. & Nielsen, David C. & Ham, Jay M. & Andales, Allan A. & Halvorson, Ardel D. & Chávez, José L. & Fang, Quanxia, 2015. "Developing and normalizing average corn crop water production functions across years and locations using a system model," Agricultural Water Management, Elsevier, vol. 157(C), pages 65-77.
    9. Iqbal, M. Anjum & Bodner, G. & Heng, L.K. & Eitzinger, J. & Hassan, A., 2010. "Assessing yield optimization and water reduction potential for summer-sown and spring-sown maize in Pakistan," Agricultural Water Management, Elsevier, vol. 97(5), pages 731-737, May.
    10. Li, Xiaolin & Tong, Ling & Niu, Jun & Kang, Shaozhong & Du, Taisheng & Li, Sien & Ding, Risheng, 2017. "Spatio-temporal distribution of irrigation water productivity and its driving factors for cereal crops in Hexi Corridor, Northwest China," Agricultural Water Management, Elsevier, vol. 179(C), pages 55-63.
    11. Giulio Sperandio & Mauro Pagano & Andrea Acampora & Vincenzo Civitarese & Carla Cedrola & Paolo Mattei & Roberto Tomasone, 2022. "Deficit Irrigation for Efficiency and Water Saving in Poplar Plantations," Sustainability, MDPI, vol. 14(21), pages 1-16, October.
    12. Han, Ming & Zhang, Huihui & DeJonge, Kendall C. & Comas, Louise H. & Gleason, Sean, 2018. "Comparison of three crop water stress index models with sap flow measurements in maize," Agricultural Water Management, Elsevier, vol. 203(C), pages 366-375.
    13. Motazedian, Azam & Kazemeini, Seyed Abdolreza & Bahrani, Mohammad Jafar, 2019. "Sweet corn growth and GrainYield as influenced by irrigation and wheat residue management," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
    14. Zhang, Liyuan & Zhang, Huihui & Zhu, Qingzhen & Niu, Yaxiao, 2023. "Further investigating the performance of crop water stress index for maize from baseline fluctuation, effects of environmental factors, and variation of critical value," Agricultural Water Management, Elsevier, vol. 285(C).
    15. Wang, Wendi & Straffelini, Eugenio & Tarolli, Paolo, 2023. "Steep-slope viticulture: The effectiveness of micro-water storage in improving the resilience to weather extremes," Agricultural Water Management, Elsevier, vol. 286(C).
    16. Amarasingha, R.P.R.K. & Suriyagoda, L.D.B. & Marambe, B. & Gaydon, D.S. & Galagedara, L.W. & Punyawardena, R. & Silva, G.L.L.P. & Nidumolu, U. & Howden, M., 2015. "Simulation of crop and water productivity for rice (Oryza sativa L.) using APSIM under diverse agro-climatic conditions and water management techniques in Sri Lanka," Agricultural Water Management, Elsevier, vol. 160(C), pages 132-143.
    17. Geerts, S. & Raes, D. & Garcia, M., 2010. "Using AquaCrop to derive deficit irrigation schedules," Agricultural Water Management, Elsevier, vol. 98(1), pages 213-216, December.
    18. Trevor W. Crosby & Yi Wang, 2021. "Effects of Different Irrigation Management Practices on Potato ( Solanum tuberosum L.)," Sustainability, MDPI, vol. 13(18), pages 1-19, September.
    19. Adam Pawlewicz & Wojciech Gotkiewicz & Katarzyna Brodzińska & Katarzyna Pawlewicz & Bartosz Mickiewicz & Paweł Kluczek, 2022. "Organic Farming as an Alternative Maintenance Strategy in the Opinion of Farmers from Natura 2000 Areas," IJERPH, MDPI, vol. 19(7), pages 1-22, March.
    20. Chen, Yuquan & Fan, Shenggen & Liu, Chang & Yu, Xiaohua, 2022. "Is there a tradeoff between nature reserves and grain production in China?," Land Use Policy, Elsevier, vol. 120(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:caa:jnlcjg:v:58:y:2022:i:2:id:51-2021-cjgpb. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://www.cazv.cz/en/home/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.