IDEAS home Printed from https://ideas.repec.org/a/bpj/sagmbi/v11y2012i4n13.html
   My bibliography  Save this article

Cluster-Localized Sparse Logistic Regression for SNP Data

Author

Listed:
  • Binder Harald

    (Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Center Johannes Gutenberg University Mainz)

  • Müller Tina

    (Global Drug Discovery Statistics, Bayer Pharma AG)

  • Schwender Holger

    (Faculty of Statistics, TU Dortmund University)

  • Golka Klaus

    (Department of Toxicology, IfADo - Leibniz Research Centre for Working Environment and Human Factors)

  • Steffens Michael

    (Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Center Johannes Gutenberg University Mainz)

  • Hengstler Jan G.

    (Department of Toxicology, IfADo - Leibniz Research Centre for Working Environment and Human Factors)

  • Ickstadt Katja

    (Faculty of Statistics, TU Dortmund)

  • Schumacher Martin

    (Institute of Medical Biometry and Medical Informatics, University Medical Center Freiburg)

Abstract

The task of analyzing high-dimensional single nucleotide polymorphism (SNP) data in a case-control design using multivariable techniques has only recently been tackled. While many available approaches investigate only main effects in a high-dimensional setting, we propose a more flexible technique, cluster-localized regression (CLR), based on localized logistic regression models, that allows different SNPs to have an effect for different groups of individuals. Separate multivariable regression models are fitted for the different groups of individuals by incorporating weights into componentwise boosting, which provides simultaneous variable selection, hence sparse fits. For model fitting, these groups of individuals are identified using a clustering approach, where each group may be defined via different SNPs. This allows for representing complex interaction patterns, such as compositional epistasis, that might not be detected by a single main effects model. In a simulation study, the CLR approach results in improved prediction performance, compared to the main effects approach, and identification of important SNPs in several scenarios. Improved prediction performance is also obtained for an application example considering urinary bladder cancer. Some of the identified SNPs are predictive for all individuals, while others are only relevant for a specific group. Together with the sets of SNPs that define the groups, potential interaction patterns are uncovered.

Suggested Citation

  • Binder Harald & Müller Tina & Schwender Holger & Golka Klaus & Steffens Michael & Hengstler Jan G. & Ickstadt Katja & Schumacher Martin, 2012. "Cluster-Localized Sparse Logistic Regression for SNP Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(4), pages 1-31, August.
  • Handle: RePEc:bpj:sagmbi:v:11:y:2012:i:4:n:13
    DOI: 10.1515/1544-6115.1694
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/1544-6115.1694
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/1544-6115.1694?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Silver Matt & Montana Giovanni & Alzheimer's Disease Neuroimaging Initiative, 2012. "Fast Identification of Biological Pathways Associated with a Quantitative Trait Using Group Lasso with Overlaps," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(1), pages 1-43, January.
    2. Winham Stacey & Wang Chong & Motsinger-Reif Alison A, 2011. "A Comparison of Multifactor Dimensionality Reduction and L1-Penalized Regression to Identify Gene-Gene Interactions in Genetic Association Studies," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-23, January.
    3. Tutz, Gerhard & Binder, Harald, 2007. "Boosting ridge regression," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 6044-6059, August.
    4. VanderWeele Tyler J, 2010. "Epistatic Interactions," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 9(1), pages 1-24, January.
    5. Jerome H. Friedman & Jacqueline J. Meulman, 2004. "Clustering objects on subsets of attributes (with discussion)," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(4), pages 815-849, November.
    6. Ming Yuan & Yi Lin, 2006. "Model selection and estimation in regression with grouped variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(1), pages 49-67, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stefanie Hieke & Axel Benner & Richard F Schlenk & Martin Schumacher & Lars Bullinger & Harald Binder, 2016. "Identifying Prognostic SNPs in Clinical Cohorts: Complementing Univariate Analyses by Resampling and Multivariable Modeling," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-18, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marra, Giampiero & Wood, Simon N., 2011. "Practical variable selection for generalized additive models," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2372-2387, July.
    2. Faisal Zahid & Gerhard Tutz, 2013. "Multinomial logit models with implicit variable selection," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 7(4), pages 393-416, December.
    3. Benhuai Xie & Wei Pan & Xiaotong Shen, 2008. "Variable Selection in Penalized Model‐Based Clustering Via Regularization on Grouped Parameters," Biometrics, The International Biometric Society, vol. 64(3), pages 921-930, September.
    4. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    5. Jun Yan & Jian Huang, 2012. "Model Selection for Cox Models with Time-Varying Coefficients," Biometrics, The International Biometric Society, vol. 68(2), pages 419-428, June.
    6. Ye, Ya-Fen & Shao, Yuan-Hai & Deng, Nai-Yang & Li, Chun-Na & Hua, Xiang-Yu, 2017. "Robust Lp-norm least squares support vector regression with feature selection," Applied Mathematics and Computation, Elsevier, vol. 305(C), pages 32-52.
    7. Guillaume Sagnol & Edouard Pauwels, 2019. "An unexpected connection between Bayes A-optimal designs and the group lasso," Statistical Papers, Springer, vol. 60(2), pages 565-584, April.
    8. Bakalli, Gaetan & Guerrier, Stéphane & Scaillet, Olivier, 2023. "A penalized two-pass regression to predict stock returns with time-varying risk premia," Journal of Econometrics, Elsevier, vol. 237(2).
    9. Shuichi Kawano, 2014. "Selection of tuning parameters in bridge regression models via Bayesian information criterion," Statistical Papers, Springer, vol. 55(4), pages 1207-1223, November.
    10. Peng, Heng & Lu, Ying, 2012. "Model selection in linear mixed effect models," Journal of Multivariate Analysis, Elsevier, vol. 109(C), pages 109-129.
    11. Yize Zhao & Matthias Chung & Brent A. Johnson & Carlos S. Moreno & Qi Long, 2016. "Hierarchical Feature Selection Incorporating Known and Novel Biological Information: Identifying Genomic Features Related to Prostate Cancer Recurrence," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1427-1439, October.
    12. G. Aneiros & P. Vieu, 2016. "Sparse nonparametric model for regression with functional covariate," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(4), pages 839-859, October.
    13. Dong, C. & Li, S., 2021. "Specification Lasso and an Application in Financial Markets," Cambridge Working Papers in Economics 2139, Faculty of Economics, University of Cambridge.
    14. Lam, Clifford, 2008. "Estimation of large precision matrices through block penalization," LSE Research Online Documents on Economics 31543, London School of Economics and Political Science, LSE Library.
    15. Gregory Vaughan & Robert Aseltine & Kun Chen & Jun Yan, 2017. "Stagewise generalized estimating equations with grouped variables," Biometrics, The International Biometric Society, vol. 73(4), pages 1332-1342, December.
    16. Pradeep Ravikumar & John Lafferty & Han Liu & Larry Wasserman, 2009. "Sparse additive models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(5), pages 1009-1030, November.
    17. Yucheng Yang & Zhong Zheng & Weinan E, 2020. "Interpretable Neural Networks for Panel Data Analysis in Economics," Papers 2010.05311, arXiv.org, revised Nov 2020.
    18. Devijver, Emilie, 2017. "Joint rank and variable selection for parsimonious estimation in a high-dimensional finite mixture regression model," Journal of Multivariate Analysis, Elsevier, vol. 157(C), pages 1-13.
    19. Jian Guo & Elizaveta Levina & George Michailidis & Ji Zhu, 2010. "Pairwise Variable Selection for High-Dimensional Model-Based Clustering," Biometrics, The International Biometric Society, vol. 66(3), pages 793-804, September.
    20. Zhang, Tao & Zhang, Qingzhao & Wang, Qihua, 2014. "Model detection for functional polynomial regression," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 183-197.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:sagmbi:v:11:y:2012:i:4:n:13. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.