IDEAS home Printed from https://ideas.repec.org/a/bpj/mcmeap/v22y2016i2p81-107n4.html
   My bibliography  Save this article

Information geometry, simulation and complexity in Gaussian random fields

Author

Listed:
  • Levada Alexandre L.

    (Computing Department, Federal University of São Carlos, São Carlos, SP, Brazil)

Abstract

Random fields are useful mathematical objects in the characterization of non-deterministic complex systems. A fundamental issue in the evolution of dynamical systems is how intrinsic properties of such structures change in time. In this paper, we propose to quantify how changes in the spatial dependence structure affect the Riemannian metric tensor that equips the model's parametric space. Defining Fisher curves, we measure the variations in each component of the metric tensor when visiting different entropic states of the system. Simulations show that the geometric deformations induced by the metric tensor in case of a decrease in the inverse temperature are not reversible for an increase of the same amount, provided there is significant variation in the system's entropy: the process of taking a system from a lower entropy state A to a higher entropy state B and then bringing it back to A, induces a natural intrinsic one-way direction of evolution. In this context, Fisher curves resemble mathematical models of hysteresis in which the natural orientation is pointed by an arrow of time.

Suggested Citation

  • Levada Alexandre L., 2016. "Information geometry, simulation and complexity in Gaussian random fields," Monte Carlo Methods and Applications, De Gruyter, vol. 22(2), pages 81-107, June.
  • Handle: RePEc:bpj:mcmeap:v:22:y:2016:i:2:p:81-107:n:4
    DOI: 10.1515/mcma-2016-0107
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/mcma-2016-0107
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/mcma-2016-0107?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jens Jensen & Hans Künsch, 1994. "On asymptotic normality of pseudo likelihood estimates for pairwise interaction processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 46(3), pages 475-486, September.
    2. Merks, Roeland M.H. & Glazier, James A., 2005. "A cell-centered approach to developmental biology," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 352(1), pages 113-130.
    3. Steven H. Strogatz, 2001. "Exploring complex networks," Nature, Nature, vol. 410(6825), pages 268-276, March.
    4. Janke, W. & Johnston, D.A. & Kenna, R., 2004. "Information geometry and phase transitions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 336(1), pages 181-186.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emerson, Isaac Arnold & Amala, Arumugam, 2017. "Protein contact maps: A binary depiction of protein 3D structures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 782-791.
    2. Ruiz Vargas, E. & Mitchell, D.G.V. & Greening, S.G. & Wahl, L.M., 2014. "Topology of whole-brain functional MRI networks: Improving the truncated scale-free model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 151-158.
    3. Igor Belykh & Mateusz Bocian & Alan R. Champneys & Kevin Daley & Russell Jeter & John H. G. Macdonald & Allan McRobie, 2021. "Emergence of the London Millennium Bridge instability without synchronisation," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    4. Berahmand, Kamal & Bouyer, Asgarali & Samadi, Negin, 2018. "A new centrality measure based on the negative and positive effects of clustering coefficient for identifying influential spreaders in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 110(C), pages 41-54.
    5. Zhang, Yun & Liu, Yongguo & Li, Jieting & Zhu, Jiajing & Yang, Changhong & Yang, Wen & Wen, Chuanbiao, 2020. "WOCDA: A whale optimization based community detection algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    6. Soh, Harold & Lim, Sonja & Zhang, Tianyou & Fu, Xiuju & Lee, Gary Kee Khoon & Hung, Terence Gih Guang & Di, Pan & Prakasam, Silvester & Wong, Limsoon, 2010. "Weighted complex network analysis of travel routes on the Singapore public transportation system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(24), pages 5852-5863.
    7. Wang, Qingyun & Duan, Zhisheng & Chen, Guanrong & Feng, Zhaosheng, 2008. "Synchronization in a class of weighted complex networks with coupling delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(22), pages 5616-5622.
    8. He, He & Yang, Bo & Hu, Xiaoming, 2016. "Exploring community structure in networks by consensus dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 342-353.
    9. Wu, Tianyu & Huang, Xia & Chen, Xiangyong & Wang, Jing, 2020. "Sampled-data H∞ exponential synchronization for delayed semi-Markov jump CDNs: A looped-functional approach," Applied Mathematics and Computation, Elsevier, vol. 377(C).
    10. Yang, Hyeonchae & Jung, Woo-Sung, 2016. "Structural efficiency to manipulate public research institution networks," Technological Forecasting and Social Change, Elsevier, vol. 110(C), pages 21-32.
    11. Zhu, Mixin & Zhou, Xiaojun, 2023. "Hybrid opportunistic maintenance policy for serial-parallel multi-station manufacturing systems with spare part overlap," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    12. Ye, Dan & Yang, Xiang & Su, Lei, 2017. "Fault-tolerant synchronization control for complex dynamical networks with semi-Markov jump topology," Applied Mathematics and Computation, Elsevier, vol. 312(C), pages 36-48.
    13. Dragicevic, Arnaud Z. & Sinclair-Desgagné, Bernard, 2013. "Sustainable network dynamics," Ecological Modelling, Elsevier, vol. 270(C), pages 43-53.
    14. Luo, Mengzhuo & Liu, Xinzhi & Zhong, Shouming & Cheng, Jun, 2018. "Synchronization of multi-stochastic-link complex networks via aperiodically intermittent control with two different switched periods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 20-38.
    15. Wei, Daijun & Deng, Xinyang & Zhang, Xiaoge & Deng, Yong & Mahadevan, Sankaran, 2013. "Identifying influential nodes in weighted networks based on evidence theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(10), pages 2564-2575.
    16. Baddeley, Adrian & Turner, Rolf & Mateu, Jorge & Bevan, Andrew, 2013. "Hybrids of Gibbs Point Process Models and Their Implementation," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 55(i11).
    17. Yao, Jialing & Sun, Bingbin & Xi, lifeng, 2019. "Fractality of evolving self-similar networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 211-216.
    18. Sanghoon Lee & Wonjoon Kim, 2017. "The knowledge network dynamics in a mobile ecosystem: a patent citation analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(2), pages 717-742, May.
    19. Jihui Han & Wei Li & Longfeng Zhao & Zhu Su & Yijiang Zou & Weibing Deng, 2017. "Community detection in dynamic networks via adaptive label propagation," PLOS ONE, Public Library of Science, vol. 12(11), pages 1-16, November.
    20. Wang, Xinhe & Lu, Junwei & Wang, Zhen & Li, Yuxia, 2020. "Dynamics of discrete epidemic models on heterogeneous networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:mcmeap:v:22:y:2016:i:2:p:81-107:n:4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.